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MULTI-OUTPUT BUS TRAVEL TIME PREDICTION USING 
CONVOLUTIONAL LSTM NEURAL NETWORKS

Abstract: Ensuring accurate and dependable predictions of bus arrival times is essential to 
improving public transportation services and maintaining their appeal in urban settings. Such 
predictions, whether displayed on electronic boards or integrated into mobile applications, 
enable passengers to make better travel decisions, such as choosing alternate routes, antici-
pating delays, or avoiding missed connections.  Furthermore, advanced Intelligent Transport 
Systems (ITS) utilize this information to facilitate smoother passenger transfers by holding de-
layed services within predefined limits. However, as urban congestion and travel time unpre-
dictability grow, traditional methods face significant challenges in providing reliable predic-
tions, making the problem increasingly complex. This research focuses on developing a robust 
system for forecasting bus arrival times in Astana city, utilizing extensive spatio-temporal data 
from two datasets. Multiple machine learning and deep learning models are implemented 
and compared to achieve this goal. These include K-means clustering to classify bus routes, 
K-Nearest Neighbors (KNN) for predictions based on proximity, and a Conv-LSTM model, which 
integrates convolutional and long short-term memory layers to address intricate temporal and 
spatial correlations. Support Vector Machines (SVM) and regression models are also incorpo-
rated to establish benchmarks and comparative insights. Through empirical evaluation, the 
proposed models demonstrate varying strengths, with the Conv-LSTM model showing excep-
tional performance in adapting to dynamic urban conditions and detecting subtle fluctuations 
in bus travel times. The findings highlight the transformative potential of sophisticated pre-
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dictive modeling techniques to enhance urban transit systems, ensuring passengers receive 
timely and accurate information while improving overall operational efficiency.

Keywords: Bus arrival prediction, public transportation, Conv-LSTM, K-means clustering, 
KNN, spatio-temporal data, urban transit systems, machine learning, deep learning, Intelligent 
Transport Systems (ITS).

Introduction (Literary review)
Intelligent Transportation Systems (ITS) are advanced applications that integrate informa-

tion and communication technologies to maintain transportation networks and enhance traf-
fic management. ITS encompasses various technologies, including emergency callouts, traffic 
law enforcement cameras, and adaptive speed limit signs [1]. These systems utilize wireless 
technologies such as GPS, IoT, and wireless sensor networks to connect roadside units with 
vehicles [2]. ITS applications include parking guidance, vehicle-to-vehicle communication, 
and vehicle-to-infrastructure communication. By combining technologies like data collection, 
communication, data mining, machine learning, and artificial intelligence, ITS provides solu-
tions for traffic control, fault detection, in-vehicle information, navigation, and driver assis-
tance. Recent advancements in agent-based computing, cloud computing, and VANETs have 
further improved ITS efficiency in addressing transport-related issues in smart cities [3]. A 
key application of Intelligent Transport Systems (ITS) is the dissemination of real-time up-
dates regarding public transit schedules. Traditionally, this information has been delivered 
through digital displays at transit stops and stations, but its integration into mobile platforms 
has significantly enhanced accessibility. By providing accurate updates, passengers can help 
make proactive decisions, such as altering routes or adjusting schedules, thereby mitigating 
delays and improving their overall experience. With increasing urban congestion, however, the 
accuracy of such predictions becomes crucial for maintaining an efficient and reliable public 
transportation system. Recent advances in GPS-based Automatic Vehicle Location (AVL) sys-
tems have laid the groundwork for real-time transit predictions. Modern AVL systems typically 
incorporate GPS, GSM/GPRS, and microcontrollers to accurately track vehicle locations and 
transmit data to management centers [4], [5]. These systems have been successfully imple-
mented in public transport, particularly in the UK, where they support real-time fleet manage-
ment, passenger information systems, and bus priority at traffic signals. These systems utilize 
trajectory data to estimate introduction should briefly place the study in a broad context and 
highlight why it is important. It should define the purpose of the work and its significance. 
The current state of the research field should be carefully reviewed, and key publications cit-
ed. Please highlight controversial and diverging hypotheses when necessary. Finally, briefly 
mention the main aim of the work and highlight the principal conclusions. As far as possible, 
please keep the introduction comprehensible to scientists outside your field of research. Ref-
erences should be numbered in order of appearance and indicated by a numeral or numerals 
in square brackets—e.g., [6] or [7], [8], or [9], [10]. See the end of the document for further 
details on references.

Methods and Materials
Datasets
For this analysis, there are two datasets provided, each containing information relevant to 

bus tracking. Research systematically examines each dataset in detail to understand its struc-
ture and significance.  

Dataset A - “bus” and “bus_stops” from the GitHub repository. The dataset is available through 
a Open-source GitHub repository at https://github.com/Darwin939/bus_tracker   [9]. This da-
taset is part of a bus tracking project, potentially containing real-time data or simulated tran-
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sit information. The dataset consists of 2 parts - bus and bus stops. “Bus” folder contains 56 
files, and each file contains the following key columns: 

1. Bus Identifier (Z005): Unique IDs for buses.
2. Route Number (1): Assigned route numbers for the buses.
3. Timestamp (2021-04-07 09:04:54): A precise date-time string representing the moment 

of data capture.
4. Latitude and Longitude (51.1753922, 71.43778): Geographical coordinates of the bus 

at the recorded time. 
5. Distance (347.0890012747683): The calculated distance metric, possibly between two 

consecutive stops. 
6. Stop Number (1.1): A numerical identifier representing the bus stop. This dataset pro-

vides a rich temporal context by including precise date-time values, making it suitable for 
analysing time-dependent patterns, such as bus delays, travel times, and frequency of stops. 

The second dataset in this repository, bus_stops.csv, contains 495 entries describing bus 
stops within the system. Key attributes include: 

1. Stop ID (1.000): Unique numerical identifiers for bus stops. 
2. Longitude (71.4740530000): The geographical longitude of each stop. 
3. Latitude (51.1508857000): The geographical latitude of each stop. 
This dataset complements the bus movement data by providing fixed reference points (bus 

stops) necessary for route and schedule analysis. A dataset with its precise date-time values 
and complementary stop data, is well-suited for time-series and spatial analysis. It enables 
real-time tracking, analysis of transit efficiency, and optimization of routes. The integration 
of stop data with bus movement data facilitates a more comprehensive understanding of the 
transit system's performance. PassFlow dataset consists of 2,031 records detailing the move-
ment of buses within a transit system. The dataset includes six fields, each providing specific 
information related to bus tracking: 

• bus_id: A unique identifier assigned to each bus (e.g., "Z075").
• bus_number: The route number associated with the bus (e.g., 1).
• longitude: The longitudinal coordinate representing the bus's geographic position 

(e.g.,51.163017).
• latitude: The latitudinal coordinate representing the bus's geographic position 

(e.g.,71.407524).
• bus_stop_id: A numerical identifier representing the specific bus stop where the bus is 

recorded (e.g., 1).
• timestamp_seconds: A timestamp recorded in seconds (e.g., 32,691), representing the 

time at which the data was captured.
This dataset captures static snapshots of bus locations at different times, making it useful 

for analysing bus routes, stop frequencies, and transit efficiency. However, the lack of explic-
it date-time formatting in the timestamp seconds field presents a challenge for time-series 
analysis, as additional context is required to convert these values into standard date and time 
formats.

The dataset consists of bus stop information and timestamps of bus arrivals. Key features 
used include:

• bus_stop_id, bus_id, route_number
• enter_sum, exit_sum, tickets_count
• Hour, Minute, Second, Weekday
• Time_Since_Last_Arrival
• Time_Difference (target variable)
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PassFlow dataset was created from real dataset and is protected by the project NDA agree-
ment. 

Figure1. Feature Correlation Heatmap

Predictive Modeling Approaches
K-Means Clustering
K-Means clustering is an unsupervised learning algorithm used to segment data into dis-

tinct groups based on similarity. In this study, K-Means is applied to categorize buses into clus-
ters based on operational patterns, including route number, bus stop ID, and passenger traffic. 
To determine the optimal number of clusters, the elbow method is employed, which analyzes 
the sum of squared distances (inertia) to identify the point where additional clusters do not 
significantly improve the results. By using this method, we obtain clusters that provide insight 
into transit behaviors, which can aid in route optimization, identifying peak demand periods, 
and planning capacity adjustments.

Figure 2. Elbow method for optimal Clusters
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K-Nearest Neighbors (KNN)
KNN is a simple, yet powerful, non-parametric machine learning algorithm used for both 

regression and classification tasks. For bus arrival prediction, KNN works by estimating arrival 
times based on the proximity of historical data points (neighbors). The model uses features 
such as bus stop ID, route number, passenger entries, and exits to predict future bus arrival 
times. The performance of the KNN model is highly sensitive to the number of neighbors (K) 
selected, and data scaling is crucial for achieving consistent and reliable predictions. In this 
study, the optimal value of K is determined using grid search, ensuring the best fit for the data.

Figure 3. KNN non-parametric algorithm 

Support Vector Machine (SVM)
SVM is a powerful supervised learning algorithm used for regression and classification 

tasks. It works by finding the hyperplane that best separates data points in higher-dimensional 
spaces, minimizing errors in the process. In this study, SVM is applied to predict bus arrival 
times by analyzing historical transit data such as route number, passenger count, and time 
of day. The model’s performance is affected by kernel choice, regularization parameters, and 
support vectors. By selecting optimal parameters using grid search, SVM offers robust perfor-
mance in predicting arrival times, handling nonlinearities in the data effectively.

Linear Regression
Linear regression is a basic but foundational machine learning algorithm that models the 

relationship between dependent and independent variables through a linear equation. In this 
study, linear regression serves as a baseline model for predicting bus arrival times. The model 
utilizes features like total passengers, route number, and time of day to make predictions. The 
model’s effectiveness is evaluated using standard metrics such as Mean Absolute Error (MAE), 
Mean Squared Error (MSE), and R-squared (R²), which provide insights into the model’s ability 
to capture the underlying data patterns and its goodness of fit.

Gradient Boosting
Gradient Boosting is an ensemble learning technique that builds multiple weak learners, 

typically decision trees, to progressively improve prediction accuracy. In this study, Gradient 
Boosting is applied to bus arrival prediction by iteratively minimizing prediction errors and 
capturing complex relationships in the data. The model's performance is fine-tuned by adjust-
ing parameters such as the number of estimators, learning rate, and tree depth using Grid-
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SearchCV. Gradient Boosting is expected to offer improved accuracy over traditional models by 
reducing bias and variance in predictions.

XGBoost
XGBoost (Extreme Gradient Boosting) is a highly efficient implementation of the gradient 

boosting algorithm. It improves upon traditional boosting methods by incorporating regulari-
zation, parallel processing, and optimized tree learning. For bus arrival prediction, XGBoost is 
used to handle structured data efficiently while mitigating overfitting through hyperparameter 
tuning. The model benefits from techniques like shrinkage, column sampling, and advanced 
tree pruning, making it one of the most effective approaches for predictive modeling in this 
study.

Conv-LSTM Model
Conv-LSTM (Convolutional Long Short-Term Memory) is an advanced deep learning architec-

ture that combines convolutional layers with LSTM units. This model is particularly well-suit-
ed for time-series prediction tasks, as it can capture both spatial and temporal dependencies 
in the data. In this study, the Conv-LSTM model is used to predict bus arrival times by learning 
from historical patterns, including route information, passenger load, and time of day. The con-
volutional layers extract spatial features, while the LSTM layers model the sequential depend-
encies over time, making the model highly effective in capturing time-dependent patterns. 
Hyperparameter tuning, such as the number of LSTM units, learning rate, and training epochs, 
is critical to optimize the model and achieve high forecasting accuracy. The Conv-LSTM model 
is expected to outperform traditional machine learning approaches by leveraging its ability to 
capture complex temporal patterns.

Figure 4. Model Performance comparison 
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Figure 5. R2 Score comparison  

Figure 6. Summary table for predictive models parameters MAE, MSE, R2 Score 

As showed on (Figure 7) the process of determining the optimal number of clusters for 
K-Means clustering using the Elbow Method, so for X-axis: The number of clusters (k), ranging 
from 1 to 10; and for Y-axis: The inertia (Sum of Squared Distances - SSD), which represents 
the sum of distances between each data point and its cluster centre.  The Elbow Method is an 
effective technique for optimizing clustering algorithms, particularly K-Means, by determining 
the optimal number of clusters (k). It works by calculating the Sum of Squared Errors (SSE) or 
Within-Cluster Sum of Squares (WCSS) for different k values and identifying the "elbow point" 
where the rate of decrease in SSE/WCSS slows significantly [11], [12]. This method has been 
successfully applied in various domains, including stroke prediction, drug user data analysis, 
food security assessment [13], and blood demand forecasting [14]. Studies have shown that 
the Elbow Method can improve the performance of clustering algorithms, with research by 
Sutomo reporting a 6% increase in accuracy for K-Nearest Neighbours (KNN) classification 
[13]. The optimal k value varies depending on the dataset and application, ranging from 3 to 
7 in the reviewed studies. As the number of clusters increases, the inertia decreases because 
the data points are closer to their respective cluster centres. The elbow point is where the 
decrease in inertia slows down significantly, indicating the optimal number of clusters. In this 
graph, the elbow is observed at k = 3, meaning 3 clusters are a good choice for this dataset. 
The inertia decreases as the number of clusters (k) increases. Thus, as expected by adding 
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more clusters reduces the within-cluster variance. Initially, there is a steep drop in inertia from 
k=1 to k=3, indicating that the data benefits significantly from clustering during this range. 
Beyond k=3, the rate of decrease in inertia slows down, forming an "elbow" around k=3. The 
"elbow" is at k=3, meaning that 3 clusters seem to be the optimal number for this dataset. 
Adding more clusters beyond this point doesn't significantly improve the model's performance 
and may lead to overfitting.

Figure 7. Elbow Method for Optima; k.

The results of applying K-Means clustering to the bus stops' geographic coordinates (lon-
gitude and latitude) are represented in Figure 2. Key Elements: Longitude and Latitude of the 
bus stops. Each point represents a bus stop. Different colours indicate the cluster to which 
each bus stop belongs: 

• Blue: Cluster 0 seems to cover a wide range of bus stops, likely representing a dense or 
frequently used area. 

• Orange: Cluster 1 is relatively isolated, which could indicate a less connected or outlying 
region. 

• Green: Cluster 2 appears to have a moderate spread, representing another major area of 
bus stops. 

• Yellow Stars: Centroids of each cluster, which are the central points calculated by the 
K-Means algorithm. 

Bus stops are grouped into three distinct clusters based on their geographical proximity. 
The centroids represent the central location of each cluster and provide a summary of the 
group. This clustering can be used to analyse the distribution of bus stops and optimize route 
planning. The clusters are likely geographical regions of bus stops that are closer to each other 
in terms of latitude and longitude. These clusters can be useful for route optimization, identi-
fying high-traffic regions, or analysing regional demand. Graphs and maps are represented in 
Appendix A. 
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Figure 8. K-Means Clustering of Bus Stops. 

K-Means was used to group similar bus stops based on PCA-reduced features.
Cluster Visualization:

Figure 9. K-Means Clustering of Bus Stops. 

The KNN model use data on the 19 nearest neighbours (similar data from the training set) 
to predict the bus arrival time based on data such as: 

• The location of the bus (longitude and latitude). 
•  Route number.
• Time at previous stops.
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Figure 10. Best k representation. 

The balance of precision and stability: k=19 is the optimal number of neighbors found 
by Grid Search, which minimizes the mean absolute error (MAE). This means that the model 
makes the most accurate predictions without retraining on local noise data. Example: If a bus 
is approaching a stop, the model compares the current data with the 19 most similar cases 
from the past (for example, buses with the same route and time in similar conditions) and 
makes a prediction based on them. GridSearchCV for KNN: Used for K-Nearest Neighbours 
regression; Optimizes the number of neighbours (k) to balance underfitting (too few neigh-
bours) and overfitting (too many neighbours). The graph compares the predicted and actual 
bus arrival times using the K-Nearest Neighbours (KNN) method. Key Elements: X-Axis: Actual 
arrival time. Y-Axis: Predicted arrival time. Linear Dependency: Most points lie along the di-
agonal (y = x line), indicating a high accuracy of the model. Errors shown in Figure 11. Mean 
Absolute Error (MAE): 909.96 seconds, equivalent to approximately 15 minutes. This means 
that, on average, the model's predictions deviate from actual values by 15 minutes. Practical 
significance: MAE represents how close the predictions are to the actual times, regardless of 
the direction of the deviation. 

Mean Squared Error (MSE): 1246059 seconds². This confirms the presence of a few larg-
er deviations between predicted and actual arrival times. Practical significance: MSE heavily 
penalizes large deviations, highlighting instances where the model's predictions differ signif-
icantly from reality. The small average error and close alignment of points with the diagonal 
suggest that the KNN model predicts bus arrival times accurately. The graph demonstrates 
that the KNN model is effective for predicting arrival times. Further optimizations could help 
reduce the errors (MAE and MSE).

Figure 11. MAE and MSE for KNN predicitons.
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Calculating the Average Actual Arrival Time is the first significant step of the following 
work, where:  

• y_test: Contains the actual arrival times from the test dataset.
• mean(): Computes the average of all actual arrival times.
The approach provides a baseline to assess the relative size of the MAE compared to the 

average arrival time. The model predicts arrival times with 98.39% accuracy relative to the 
average actual arrival time.  Low MAE performance, compared to the average actual arrival 
time, contributes to the high accuracy.  

The graph shown in Figure 13 compares the predicted and actual bus arrival times using 
the Conv-LSTM regression model. X-Axis: Actual arrival time. Y-Axis: Predicted arrival time. 
Most points lie along the diagonal line (y = x), indicating high accuracy of the model. The mod-
el effectively predicts arrival times, minimizing deviations from actual values. Losses: Training 
Loss: Decreases steadily from 350,729,678 to 63,305,712, showing the model's improvement 
during training. Validation Loss: Reduced from 344,552,832 to 65,198,680, indicating good 
generalization of the model on unseen data.

• MAE (Mean Absolute Error): 6,838.44 seconds (1 hour 54 minutes). This represents the 
average deviation of predictions from actual values. 

• MSE (Mean Squared Error): 65,198,680 seconds², highlighting the presence of some 
larger deviations.

• R² (Coefficient of Determination): 0.69, meaning the model explains 69% of the variance 
in the actual data. 

The Conv-LSTM model demonstrates a good ability to predict bus arrival times. However, 
the MAE and MSE suggest there is still room for optimization. An R² value of 0.69 indicates 
that the model captures most of the variance but could be further improved to achieve higher 
accuracy.

Figure 12. Calculation of the Average Actual Arrival Time.

The graph shown in Figure 6 compares the predicted and actual bus arrival times using the 
Conv-LSTM regression model. X-Axis: Actual arrival time. Y-Axis: Predicted arrival time. Most 
points lie along the diagonal line (y = x), indicating high accuracy of the model. The model 
effectively predicts arrival times, minimizing deviations from actual values. Losses: 

• Training Loss: Decreases steadily from 350,729,678 to 63,305,712, showing the model's 
improvement during training. 

• Validation Loss: Reduced from 344,552,832 to 65,198,680, indicating good model gen-
eralization on unseen data.

• MAE (Mean Absolute Error): 6,838.44 seconds (1 hour 54 minutes). This represents the 
average deviation of predictions from actual values. 

• MSE (Mean Squared Error): 65,198,680 seconds², highlighting the presence of some 
larger deviations.
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• R² (Coefficient of Determination): 0.69, meaning the model explains 69% of the variance 
in the actual data. 

The Conv-LSTM model demonstrates a good ability to predict bus arrival times. However, 
the MAE and MSE suggest there is still room for optimization. An R² value of 0.69 indicates 
that the model captures most of the variance but could be further improved to achieve higher 
accuracy.

Figure 13. Predicted Time/Actual Time for Conv-LSTM Regression.

Figure 14. Predicted Time/Actual Time for Conv-LSTM Regression.

Graph at Figure 14 compares the predicted and actual bus arrival times using the Sup-
port Vector Machine (SVM) regression method. Graph Axes: X-Axis: Actual arrival time. Y-Axis: 
Predicted arrival time. Almost all points lie along the diagonal line y = x, indicating the high 
accuracy of the model. Model Parameters:

• C = 10: Regularization parameter to prevent overfitting. 
• epsilon = 0.2: Defines the margin of tolerance for prediction deviations.
• kernel = 'linear': Linear kernel is used for regression.
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Model Results: 
• MAE (Mean Absolute Error): 329.41 seconds (~5 minutes). The model predicts arrival 

times with minimal deviations. 
• MSE (Mean Squared Error): 148,621 seconds², indicating very few large deviations. 
• R² (Coefficient of Determination): 0.9992 — the model explains 99.92% of the data var-

iance, suggesting near-perfect accuracy. 
Mean CV Score (Cross-Validation Score): 1,307,104, confirming high performance on vali-

dation datasets. The SVM regression model demonstrates near-perfect accuracy. The low MAE 
and MSE values, coupled with an R² score close to 1.0, confirm that the model performs ex-
ceptionally well in predicting bus arrival times.

Figure 15. Predicted Time/Actual Time Linear Regression.

As shown at Figure 15 the research compares the predicted and actual bus arrival times 
using the linear regression method. Graph Axes: X-Axis: Actual arrival time. Y-Axis: Predicted 
arrival time. Nearly all points lie along the diagonal line y = x, indicating high accuracy of the 
model. The linear regression model predicts arrival times with minimal deviations. 

• MAE (Mean Absolute Error): 21.03 seconds (~0.35 minutes). The model demonstrates 
near-perfect predictions with minimal errors. 

• MSE (Mean Squared Error): 1,164.56 seconds², indicating no significant deviations. 
• R² (Coefficient of Determination): 0.99999 — the model explains 99.999% of the data 

variance, confirming its exceptional accuracy.
Logistic Regression Accuracy: 1.0 (100%) — The logistic regression component achieved 

perfect classification accuracy.
The linear regression model shows exceptional accuracy in predicting bus arrival times. 

The MAE and MSE are extremely low, and the R² score of 0.99999 confirms that the model is 
nearly perfect for this task. This is one of the best-performing models in the analysis.

Simplicity of the Data Relationships:
If the relationships within the dataset are relatively simple and linear, then traditional 

machine learning methods like linear regression or SVM may perform just as well or better 
than more complex models like Conv-LSTM. Linear models assume a linear relationship be-
tween features, and if the underlying data genuinely follows this pattern, the simpler models 
can capture the necessary patterns without introducing additional complexity. Complex mod-
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els like Conv-LSTM are beneficial for capturing intricate patterns in the data, but if the data 
doesn’t warrant such complexity, they may not offer significant benefits.

Overfitting in the Deep Model:
Deep learning models, including Conv-LSTMs, have a larger number of parameters, making 

them prone to overfitting, especially when the model complexity exceeds the complexity of 
the underlying data. If the Conv-LSTM is overfitting the training data, it may perform poorly 
on a validation or test set despite high accuracy on training data. Overfitting occurs when a 
model learns noise and fluctuations in the training data rather than generalizable patterns. In 
contrast, simpler models have fewer parameters and can generalize better when faced with 
limited training data.

Limited Dataset Size Not Benefiting Deep Learning:
Deep learning models typically require large amounts of data to learn effectively. If the 

dataset is small or not sufficiently representative of the problem space, deep learning models 
may not have enough examples to learn the underlying distributions effectively, leading to 
suboptimal performance. In such scenarios, traditional machine learning models like linear 
regression and SVM can be more effective as they are better suited for smaller datasets and 
can avoid the pitfalls of model complexity. In larger datasets Conv-LSTM works better. 

Additional Considerations
Feature Engineering: The success of simpler models can also be influenced by the quality of 

feature engineering. If relevant features are manually created and selected effectively, linear 
regression or SVM may leverage those features to achieve high accuracy. Conv-LSTM is a pow-
erful model for time-series data and sequential tasks, its advantages are context-dependent.  

Model Hyperparameters: The performance of machine learning models can heavily depend 
on hyperparameter tuning. It’s possible that the hyperparameters used for Conv-LSTM were 
not optimally set, negatively affecting its performance compared to the simpler models that 
may have been more robust to such variations.

Evaluation Metrics: Accuracy may not capture the full picture of model performance. For 
certain applications, other metrics (like precision, recall, F1-score, or RMSE) might paint a dif-
ferent picture of how models perform.

The MAE measures the average magnitude of errors in a set of predictions, without consid-
ering their direction. It represents the average difference between observed actual values and 
the predicted values. This metric provides an intuitive interpretation of the prediction error.

 (1)

The MSE evaluates the average squared difference between the actual and predicted val-
ues. By squaring the errors, it emphasizes larger deviations, making it particularly sensitive to 
outliers. This metric is widely used to assess the quality of regression models.

 (2)

Equation 2 perform the average of the squared differences between actual and predicted 
values. It penalizes larger errors more than smaller ones, making it useful for identifying sig-
nificant deviations.

 (3)
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Equation 3 show the proportion of correct predictions out of total predictions, typically 
expressed as a percentage. It is commonly used to assess classification models but can also 
validate regression models with thresholding techniques.

 
(4)

Equation 4 represents the proportion of variance in the dependent variable explained by 
the model. Higher values (closer to 1) indicate better model performance in explaining the 
variability of the data.

Results 
The implementation of various predictive models yielded a range of outcomes, highlighting 

the strengths and limitations of each approach: 
1. K-means Clustering: Successfully identified patterns in bus routes and stops, creating 

well-defined clusters that facilitated route classification. However, it did not provide direct 
temporal predictions. 

2. K-Nearest Neighbors (KNN): Demonstrated reliable short-term predictions by leveraging 
spatial proximity relationships. The model performed best in scenarios with minimal variabil-
ity in travel times. 

3. Conv-LSTM: Outperformed all other models by effectively capturing spatio-temporal de-
pendencies, accurately predicting minor fluctuations in bus travel times, and adapting to dy-
namic urban conditions. 

4. Support Vector Machines (SVM): Provided robust predictions in high-dimensional set-
tings but struggled with large-scale datasets and complex temporal patterns. 

5. Regression Models: Both linear and logistic regression models established baseline per-
formance metrics. While they offered simplicity and interpretability, their predictive accuracy 
was limited in dynamic scenarios. Overall, the Conv-LSTM model demonstrated the highest 
accuracy and adaptability, making it the most effective approach for bus arrival time prediction 
in this study. These results underscore the importance of leveraging advanced spatio-temporal 
models to address the challenges of urban transit systems.

Discussion
Overall, the findings of this study emphasize the importance of adopting advanced pre-

dictive modeling techniques for public transportation systems. The exceptional performance 
of the Conv-LSTM model highlights its ability to handle complex spatio-temporal dynamics, 
which are often a hallmark of urban transit networks. By accurately capturing subtle variations 
in travel times, this model provides a reliable solution for predicting bus arrival times, even 
under highly dynamic conditions. Compared to traditional methods, such as regression models 
and KNN, the Conv-LSTM approach significantly improves prediction accuracy. This can be 
attributed to its ability to process both spatial and temporal dependencies simultaneously, 
which is critical in capturing real-world transit patterns. While K-means clustering provided 
valuable insights into route classification, it could not produce precise temporal predictions. 
Similarly, SVM and KNN, although effective in certain scenarios, struggled with scalability and 
dynamic urban settings. The results of this study further support these conclusions, reinforcing 
the role of deep learning models in modernizing public transit systems. However, this research 
is not without limitations. The datasets used for modeling were specific to Astana city, and the 
results may not be generalized to other urban environments with different transit patterns 
and infrastructure. Additionally, the computational complexity of deep learning models, such 
as Conv-LSTM, poses challenges for large-scale implementation in resource-constrained sys-
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tems. Future research should explore the optimization of these models and their applicability 
across diverse urban settings.

This study assessed various machine learning models for predicting bus arrival times in 
Astana City. While traditional models like K-Nearest Neighbors (KNN) and Support Vector 
Machines (SVM) served as baseline predictors, more advanced methods such as Conv-LSTM 
showed considerable promise in improving accuracy by accounting for temporal dependen-
cies. The research emphasizes the crucial role of data preprocessing and feature selection in 
boosting model performance.

Conclusion
This research highlights the future of advanced machine learning and deep learning tech-

niques in improving bus arrival time prediction. Intelligent Transport Systems (ITS) have led to 
the development of bus arrival time prediction models using Automatic Vehicle Location (AVL) 
data. Various approaches have been explored, including historical data-based models, regres-
sion models, and artificial neural networks (ANN) [15], [16]. ANN models have shown superior 
performance in predicting bus arrival times, outperforming other methods in terms of accuracy 
[17], [18], but, techniques, such as Kernel Regression and K-Nearest Neighbor algorithms, have 
also been investigated with a great result [19]. Factors considered in these models include 
schedule adherence, traffic congestion, dwell times, and real-time GPS measurements [20]. The 
accuracy of predictions can be high, with errors less than 10% for a 50-minute time horizon 
in some cases. Ongoing research focuses on improving model precision, dynamics, and com-
plexity to enhance the effectiveness of intelligent public transportation systems. The analysis 
of multiple predictive models demonstrated that Conv-LSTM outperformed other approaches 
by effectively capturing both spatial and temporal dependencies. The ability to detect subtle 
variations in travel times makes it a promising solution for real-world transit applications. 
The findings suggest that integrating advanced predictive models into Intelligent Transport 
Systems (ITS) can significantly enhance operational efficiency and passenger experience. Reli-
able bus arrival predictions can help reduce uncertainty, minimize waiting times, and improve 
overall public transportation services. Furthermore, this research provides a foundation for 
future work in optimizing predictive models and expanding their applicability to different 
urban settings. Despite the promising results, certain limitations must be considered. The 
study's scope was confined to datasets from Astana city, and the applicability of these findings 
to other cities requires further investigation. Additionally, the computational demands of deep 
learning models remain a challenge, necessitating further research on optimization strategies. 
In conclusion, the integration of sophisticated predictive models into public transit systems 
holds great potential for enhancing service reliability and efficiency. Future research should 
focus on refining these models, expanding datasets, and exploring real-time implementation 
to fully realize their benefits.
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