
37

Copyright © 2025, Authors. This is an open access article under the Creative Commons CC BY-NC-ND license
Received: 02.12.2024          Accepted: 25.06.2025        Published: 30.06.2025

Evan Yershov
Bachelor student, Faculty of Physics and Technology
yershov_evan@kaznu.edu.kz; orcid.org/0009-0006-2267-0365 
Al-Farabi Kazakh National University, Kazakhstan

Madiyar Nurgaliyev
PhD, Faculty of Physics and Technology 
madiyar.nurgaliyev@kaznu.edu.kz; orcid.org/0000-0002-6795-5384 
Al-Farabi Kazakh National University, Kazakhstan

Gulbakhar Dosymbetova
PhD, Faculty of Physics and Technology
gulbakhar.dossymbetova@kaznu.edu.kz; orcid.org/0000-0002-3935-7213 
Al-Farabi Kazakh National University, Kazakhstan

Batyrbek Zholamanov
PhD student, Faculty of Physics and Technology
zholamanov.batyrbek@kaznu.kz; orcid.org/0000-0001-8206-7425 
Al-Farabi Kazakh National University, Kazakhstan

Sayat Orynbassar
PhD student, Faculty of Physics and Technology
sayat.orynbassar@kaznu.edu.kz; orcid.org/0009-0001-9124-2560 
Al-Farabi Kazakh National University, Kazakhstan

Tomiris Khumarbekkyzy
Master student, Faculty of Physics and Technology
khumarbekkyzy_t@kaznu.edu.kz; orcid.org/0009-0005-4945-6273 
Al-Farabi Kazakh National University, Kazakhstan

DOI: 10.37943/22GEBT9085

DOI: 10.37943/22GEBT9085
© Evan Yershov, Madiyar Nurgaliyev, 
    Gulbakhar Dosymbetova, Batyrbek Zholamanov, 
    Sayat Orynbassar, Tomiris Khumarbekkyzy

CLASSIFICATION OF HUMAN EMOTIONS USING THERMOGRAMS 
AND NEURAL NETWORK 

Abstract: As information systems and technologies continue to evolve, there remains a 
noticeable gap in the efficiency and practicality of data processing algorithms, especially in 
the field of emotion recognition. This study explores several neural network models designed 
to classify emotions based on thermal images (thermograms). The dataset used for training 
included 1,642 images, some of which were generated through augmentation, with all images 
captured while participants viewed emotionally charged videos. The goal was to recognize six 
basic emotions: joy, sadness, fear, disgust, anger, and surprise. To identify the most effective 
architecture, the performance of five models were compared: a standard convolutional neu-
ral network (CNN), Quadruplet Network, U-Net, Inception, and SqueezeNet. Each model was 
trained on the same dataset under consistent conditions. Classification accuracy and valida-
tion loss were the main evaluation metrics. In addition, data augmentation and early stopping 
were applied to improve generalization and prevent overfitting. Among the tested architec-
tures, the Inception model achieved the highest test accuracy of 97.5%, while the Quadruplet 
Network achieved 96.85% accuracy with a lower validation loss of 0.571, indicating stronger 
generalization. These results suggest that both models are well-suited for real-time emotion 
recognition using thermal imaging. The findings highlight the potential of combining infrared 
data with modern neural architectures to advance emotion detection systems beyond tradi-
tional RGB-based methods.
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Introduction
Technological development makes it possible to introduce more powerful and accurate 

computing devices. This process leads to the development of calculation methods and an 
increase in the range of technical capabilities. One of the new possibilities is classification, 
forecasting of numerical parameters based on input data, voice assistants based on language 
models and robots based on artificial intelligence. This has become possible due to the de-
velopment of computing technologies and mathematical methods. One of these methods is 
neural networks [1]. Today, there are many different types of neural networks, the combina-
tion of which creates new architectures, which improves the learning process, accuracy and 
increases the range of tasks performed. There are such types of neural networks as FNN, RNN, 
LSTM, GRU and CNN. If we classify each type of neural network by the type of data processed, 
then FNN [2] works better with single data, neural networks with feedback (RNN, LSTM, GRU) 
[3] work with data arrays and time dependence, and CNN [4] with images. The development 
of methods and techniques of data processing is a product of the ordered and chaotic dissem-
ination of information.

It is natural for a person to show their emotions with facial expressions, but if they hide 
them, their condition can be judged by their behavior, temperature, and pulse. When experi-
encing various emotions, a person’s face changes its temperature. The greater the intensity of 
the emotions experienced, the more visible the temperature difference in different areas of 
the face is as a result of the work of the autonomic nervous system. As scientific works confirm, 
emotions have different natures: negative, positive, and neutral [5]. And the main ones are 
joy, surprise, sadness, disgust, fear, and anger [6]. The ability to accurately recognize human 
emotions will improve the human-machine interface and increase the quality of people’s lives. 
To obtain this ability, it is necessary to implement an emotion recognition system using ther-
mograms. CNN is best suited for this task.

The VGG architecture is characterized by its simplicity and depth, relying on small 3×3 
convolutional filters to build deeper models with improved accuracy [7]. GoogleNet intro-
duced the inception module, which combines multiple convolutional kernels (1×1, 3×3, 5×5) 
to better extract both local and global features [8]. ResNet advanced the field with residual 
connections, effectively mitigating the vanishing gradient problem and enabling the training 
of extremely deep networks [9]. DenseNet further improved gradient flow by establishing 
dense connections between layers, making the model more compact and promoting feature 
reuse [10].

Subsequent architectures focused on efficiency and scalability. EfficientNet introduced com-
pound scaling of network depth, width, and resolution to balance performance and cost [11]. 
BiT applied transfer learning using large pre-trained models for strong domain adaptation 
[12]. The Vision Transformer (ViT) brought attention-based mechanisms from NLP to image 
processing by treating image patches as tokens [13].

Later developments such as Meta Pseudo-Labels [14], Swin Transformer [15], EfficientNetV2 
[16], ConvNeXt [17], and Segment Anything Model (SAM) [18] expanded the field through 
semi-supervised learning, hierarchical attention structures, accelerated training, and universal 
segmentation capabilities.

In the context of thermal image classification, which involves low-resolution, low-texture, 
grayscale inputs, selecting an appropriate neural network architecture is critical. Inception 
networks, for example, are effective due to their multi-scale feature extraction capabilities. 
The Quadruplet Network, based on metric learning, improves inter-class separability by learn-
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ing compact and discriminative embeddings – valuable when emotional states differ only 
subtly in thermal data. Other modern architectures like EfficientNet and ConvNeXt offer ef-
ficient training and generalization performance, which is especially important for small and 
specialized datasets such as thermograms.

The novelty of this research lies in the systematic evaluation of multiple state-of-the-art 
CNN architectures on a custom thermal image dataset specifically designed for facial emotion 
recognition. To our knowledge, this is one of the first studies to benchmark deep architectures 
such as Inception, EfficientNet, ConvNeXt, and the Quadruplet Network on thermal data for the 
task of classifying six basic human emotions.

When designing the architecture of a convolutional neural network, researchers can adjust 
the number of hidden layers, the type of convolution operations, activation functions, and loss 
functions. It is also possible to enhance the model through normalization techniques or ad-
vanced architectural modifications, such as using Siamese or metric-learning-based networks. 
By adjusting the nonlinear structure of the model, it can be adapted to the specific character-
istics of thermal images.

The main objective of this work is to build a neural network to improve the classification 
of emotions according to one of the parameters: classification accuracy, learning speed and 
flexibility.

The Methodology section describes the neural network architectures used in this study, their 
specific configurations, and the mathematical formulations that define their operation. The Re-
sults and Discussion section presents and interprets the experimental findings obtained from 
training on thermal image data, including analysis of classification accuracy, learning efficien-
cy, and model adaptability. Finally, the Conclusion section summarizes the main outcomes of 
the study and suggests possible directions for future research.

Methods and Materials
To develop a robust and high-quality neural network architecture for emotion recognition 

from thermal images, the study was structured into the following sequential stages: data col-
lection, image preprocessing, image analysis, neural network construction, model training, and 
evaluation.

Thermal data were collected in a controlled indoor environment at room temperature. The 
participants included ten healthy volunteers aged between 18 and 19 years. Each participant 
was seated in front of a thermal imaging camera and a laptop that displayed a curated se-
quence of short video clips with audio. These audiovisual stimuli were specifically selected to 
elicit six basic human emotions: joy, sadness, fear, disgust, anger, and surprise.

During the viewing of these stimuli, changes in facial temperature were continuously re-
corded using a thermal camera. These thermal fluctuations reflect autonomic nervous system 
responses and are particularly observable in regions such as the forehead, cheeks, and areas 
surrounding the eyes. The resulting thermal data captured the dynamic physiological patterns 
associated with each emotional state. The characteristics of the thermal camera used for data 
collection are presented in Table 1.

Table 1. Device characteristics

Device name Characteristics
Fluke TiS20+ MAX thermal imager IR resolution: 120x90

Infrared spectral range: from 8 to 14 µm
Temperature range: -20°C to 400°C
Sensitivity: 60 mK
Minimum focal length: 0.5 m
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As the thermal images (TIs) were captured in the thermal imager’s auto-calibration mode, 
the initial raw images exhibited a consistent appearance. To better visualize the subtle tem-
perature differences on the human face under various emotional conditions, a specific temper-
ature range was selected using the Fluke Connect software. This enhancement made it possi-
ble to highlight meaningful thermal features. After testing multiple temperature intervals, the 
range from 32°C to 35.5°C was found to reveal the most distinguishable features.

In the next stage, facial localization was achieved through temperature thresholding, iso-
lating high-temperature areas associated with facial skin. The largest connected region within 
the selected temperature range was designated as the region of interest (ROI). A bounding box 
was drawn around the detected facial area, which was then cropped and resized to 48 × 48 
pixels to balance computational efficiency with the retention of critical thermal details. The 
steps for processing thermographic images are shown in Figure 1.

Figure 1. Representative thermal images of a person’s face for each of the six basic emotions.

The final dataset comprised 1,642 thermal images, including 821 original thermograms 
and 821 augmented samples generated through standard image augmentation techniques. 
The methods used to increase the amount of data are presented in Table 2.

Table 2. Applied methods to increase the amount of data

Augmentation type Transformation Parameter range

Geometric Rotation ± 10°
Horizontal flip 50% probability
Scaling 90% – 110%
Translation ± 3 pixels (X, Y)

Each image was labeled based on the corresponding elicited emotion. The data were dis-
tributed as uniformly as possible among the six emotional classes, with 274 images assigned 
to each class, except for anger, which included 272 images. This near-balanced distribution 
ensured fairness in model training and minimized classification bias. The dataset was subse-
quently divided into 80% for training and 20% for testing, following standard machine learn-
ing practice.

Figure 2 presents representative examples of thermal facial images for each of the six basic 
emotions. The discernible variations in temperature distribution serve as the foundation for 
the neural network’s ability to distinguish between emotional states based on thermographic 
input.
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Figure 2. Representative thermal images of a person’s face for each of the six basic emotions.

Although thermal datasets differ significantly from large-scale RGB datasets, their inherent 
properties—such as reduced noise, lower texture complexity, and consistent spatial patterns—
make them well-suited for convolutional analysis. In this study, data augmentation techniques 
such as rotation, scaling, and horizontal flipping were employed to increase variability and 
improve the model’s generalization. The selected architectures, including Inception and Quad-
ruplet networks, were chosen for their proven performance in constrained-data scenarios, al-
lowing efficient training while capturing essential thermal features.

These design choices enabled the model to effectively learn meaningful emotional pat-
terns from thermographic input and demonstrate reliable classification performance without 
requiring massive datasets. This highlights the feasibility of emotion recognition from thermal 
images when supported by targeted architecture design and principled data handling.

CNN Architecture
Convolutional neural networks (CNNs) [4] are a powerful image processing tool that uses 

convolution, pooling, and fully connected layers to extract features. The basic idea is to apply 
a convolution operation to an input image using filters. The convolution is calculated as the 
sum of the products of the image pixel values and the corresponding filter weights:

 (1)

where x is the input image, w is a filter of size u×u (commonly u=3 or u=5), b is the bias.
To prevent the image from changing its size when convolution is applied, padding is often 

used, which adds extra zero pixels to the edges of the image. The convolution process also 
uses a stride s, which determines how many positions the filter moves across the image.After 
the convolution operation, the results are passed through a nonlinear activation function such 
as ReLU (Rectified Linear Unit), which has the form:

 (2)

This allows the model to consider only positive values, speeding up training and improving 
feature representation. Next, a pooling operation such as MaxPooling is applied, which reduc-
es the dimensions of images, ensuring invariance to small changes in the position of objects: 

 (3)

After several convolutional and pooling layers, the image is converted into a one-dimen-
sional vector, which is then fed to fully connected layers. For each neuron in these layers, a 
weighted sum of the input values is calculated:

 (4)

where W is the weight matrix, x is the input vector, and b is the bias.
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At the output of the network, the Softmax activation function is applied for multi-class 
classification, which transforms logits into probabilities:

 
(5)

where zi are the logits for each class, and the output of the Softmax function is the proba-
bility of each class.

To train the network, a loss function is used, such as cross-entropy for classification, which 
measures the discrepancy between the true labels and the predicted probabilities:

 (6)

where yi is the true class label, and pi is the predicted probability for class i.

Figure 3. CNN architecture.
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Thus, CNN efficiently extracts features, learns, and classifies images by minimizing the loss 
function using optimization techniques such as gradient descent. An example of CNN archi-
tecture is shown in Fig. 3.

Siamese CNN and Quadruplet Network Architecture
Siamese convolutional neural network (Siamese CNN) [19] is a neural network architec-

ture that is used for the task of comparing two input images. These networks consist of two 
identical subnetworks that process two input images and compare their representations. This 
approach is used in tasks where it is important to determine the similarity degrees between 
objects, such as in face recognition or identity verification.

The basic idea is that both input images are passed through the same network architecture, 
resulting in similar or identical representations if the images are similar, or very different if 
the images are different.

The training of Siamese CNN consists of minimizing the contrast loss, which leads to an 
improvement in the network’s ability to distinguish similarities and differences between pairs 
of images. Siamese CNN can be used to solve problems in the field of face recognition, signa-
ture verification, pattern matching, and other areas where it is necessary to compare objects 
by similarity.

Quadruplet Network is an extension of the Siamese Network concept designed for tasks 
related to image classification, verification, and ranking [20]. Unlike simpler architectures such 
as Siamese Network or Triplet Network, which work on pairs or triplets of images, Quadruplet 
Network processes four images in a single pass, which improves the network’s ability to dis-
criminate and generalize features.

Figure 4. Quadruplet Network architecture.
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In this work, identical images were fed to the input of the Quadruplet Network. This was 
done in order to create interacting branches that minimize or maximize key properties of 
thermograms by changing weight coefficients. The considered architecture of the Quadruplet 
Network is shown in Fig. 4.

U-Net Architecture
U-Net is a neural network architecture specifically designed for image segmentation tasks, 

especially in the field of medical diagnostics [21]. It is used to highlight objects in images such 
as cells, tumors, and other anatomical structures.

The U-Net architecture consists of two main parts: an encoder and a decoder. The encoder 
is a series of convolutional and pooling layers that reduce the spatial dimensions of the image 
and extract key features. After that, the information passes through a series of deconvolutional 
layers that restore the feature map dimensions to the original image dimensions.

A special feature of U-Net is the use of so-called skip connections between the correspond-
ing layers of the encoder and decoder. These connections allow high-level information about 
local features to be preserved, which improves segmentation accuracy, especially for small 
objects and objects with fuzzy boundaries. The encoder applies convolution and pooling oper-
ations, obtaining a smaller feature map. The decoder restores resolution using deconvolution.

The loss function for U-Net typically includes a cross-entropy or Dice coefficient. Cross-en-
tropy measures the discrepancy between the true label and the prediction for each pixel (6). 
The Dice coefficient measures the similarity between the predicted and true segmentation:

 (7)

where A and B are sets of pixels corresponding to objects in the predicted and true seg-
mentation.

The training process of U-Net is to minimize the loss function, which allows the network to 
segment images effectively. U-Net is widely used in medical segmentation for image analysis, 
such as MRI, CT, and in tasks where high accuracy of object detection in images is required. In 
this paper, U-Net is used for classification. An example of U-Net architecture is shown in Fig. 5. 
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Figure 5. U-Net architecture.
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Inception Architecture 
Inception is the result of years of research into improving the performance of convolutional 

neural networks for computer vision tasks such as image classification [22].
The basic idea behind Inception is to use different types of convolutions with different filter 

sizes in a single layer of the network. Instead of using only one type of filter (e.g. only 3x3 or 
5x5), Inception uses multiple parallel convolution operations with filters of different sizes: 
1x1, 3x3, and 5x5, as well as pooling operations with max pooling. The results are then con-
catenated, allowing the model to extract more diverse features at different scales in a single 
layer.

The Inception architecture has been improved over time, reaching its greatest success in 
Inception-v3. A single layer uses 1x1, 3x3, and 5x5 filters, and a 3x3 pooling operation with a 
stride of 2. This allows the network to extract features of different scales, improving its ability 
to handle complex images. Using 1x1 filters helps reduce the feature dimensionality and re-
duce computational costs. This also improves the quality of the network without adding signif-
icant computational costs. All outputs from different convolution operations are concatenated, 
allowing the model to leverage information from different filters and improve performance.

Operating on an input image x of size H×W, the output of a layer can be expressed as:

 (8)

where  are various convolution and subsam-
pling operations with filters of different sizes, and consat is the operation of combining all the 
results into one tensor. 

Inception has significantly improved accuracy over traditional architectures such as AlexNet 
and VGG by using computational resources more efficiently. The model has become widely 
used for image classification, object recognition, and other computer vision applications.

One of the main advantages of Inception is the ability to extract different features from dif-
ferent levels of abstraction, which allows models to achieve high results with lower computa-
tional costs. However, the Inception architecture also has its limitations, such as complexity in 
implementation and the need for a large amount of training data. An example of the Inception 
architecture is shown in Fig. 6.
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Figure 6. Inception architecture
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SqueezyNet Architecture
SqueezeNet is a neural network architecture designed to reduce the number of parameters 

and computational cost while maintaining high accuracy [23]. One of the main differences 
of SqueezeNet is the use of a “squeeze” strategy, which significantly reduces the number of 
parameters, making the model more compact and suitable for use on devices with limited 
computing resources.

The basic idea behind SqueezeNet is to use so-called squeeze layers. These layers use 1x1 
convolutions that reduce the dimensionality of the data before feeding it into more complex 
layers with larger filters, such as 3x3 convolutions. This allows the number of parameters in 
the network to be significantly reduced without losing the ability to extract important features 
from the data. Unlike standard models that use larger filters, SqueezeNet uses 1x1 convolu-
tions as “squeeze” operations. This allows the number of channels and parameters to be sig-
nificantly reduced, minimizing computational costs while still retaining the ability to extract 
information. SqueezeNet consists of so-called fire modules, which include two types of layers: 
squeeze layers (with 1x1 filters) and expander layers (with 3x3 filters). These modules allow 
for efficient information processing while keeping the number of parameters small. In each 
fire module, the data is first compressed using 1x1 convolutions, and then the data is passed 
through layers with 3x3 filters. This allows combining the efficiency of 1x1 convolutions with 
the power of larger filters for feature extraction.

For an input image x of size HxW, at the output of the fire module:

 (9)

where  is a 1x1 convolution operation for compression, and  is a 3x3 
convolution operation for expansion.

The advantage of this scheme is that the number of parameters in the network is signifi-
cantly reduced, since 1x1 convolutions require less computation than standard convolutions 
of large dimensions, which makes the model suitable for use on mobile devices and in re-
source-constrained environments. By using 1x1 convolutions and fire modules, SqueezeN-
et significantly reduces the number of parameters (up to 50-60 times compared to tradi-
tional networks such as AlexNet), while maintaining high accuracy. Despite its smaller size, 
SqueezeNet demonstrates good performance in image classification tasks and is also suitable 
for running on devices with limited computing resources.
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Figure 7. SquezyNet architecture.

SqueezeNet is ideal for applications where model compactness is important, such as mo-
bile devices, robotics, and other systems with limited computing power. An example of the 
SqueezeNet architecture is shown in Fig. 7. 

Results and Discussion
Key performance metrics for evaluating neural network models include classification ac-

curacy and loss. To prevent overfitting during training, the EarlyStopping strategy was imple-
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mented with a patience parameter of 10 epochs, terminating training when validation loss 
ceased to improve. Table 3 summarizes the training outcomes for each tested architecture, 
including the total number of epochs, training and validation losses, training and validation 
accuracies, and the final test accuracy achieved on the unseen data.

Table 3. Training and validation metrics for different neural network architectures

Name of architecture CNN Quadruplet 
Network U-Net Inception SquezyNet

Number of epochs 133 200 200 188 178
Train loss 0.3574 0.0615 0.2488 0.0235 0.0615
Validation loss 0.6869 0.571 0.7957 0.6565 0.8029
Train accuracy 0.8653 0.9908 0.9197 0.9945 0.9815
Validation accuracy 0.7758 0.8791 0.823 0.8968 0.8496
Test accuracy 0.8474 0.9685 0.9004 0.975 0.9551

Figures 8–12 illustrate the training and validation dynamics of each model in terms of loss 
and accuracy progression over epochs.

Figure 8. CNN 

Figure 9. Quadruplet Network
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Figure 10. U-Net.

Figure 11. Inception.

Figure 12. SquezyNet.

Most models exhibit a consistent upward trend in validation accuracy during training. How-
ever, fluctuations in validation loss suggest potential overfitting in deeper or more complex 
architectures, particularly under the constraints of a relatively small dataset.

Despite its limited size, the dataset was collected under controlled laboratory conditions 
using a Fluke thermal imager, ensuring consistency in resolution (48×48 pixels), environmen-
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tal factors, and sensor calibration. To enhance model generalization, geometric data augmen-
tation techniques were applied, including rotation, horizontal flipping, scaling, and translation. 
These transformations were carefully selected to preserve essential thermal gradients, which 
are critical for emotion classification.

Among the five evaluated architectures, Inception achieved the highest test accuracy of 
97.5%, supported by a training accuracy of 99.45% and validation accuracy of 89.68%. In 
comparison, the Quadruplet Network reached a slightly lower test accuracy of 96.85%, but 
demonstrated more stable validation behavior, with a validation accuracy of 87.91% and a 
lower validation loss of 0.571.

These results highlight a trade-off between representational capacity and generalization: 
Inception is more effective at extracting high-level features, whereas Quadruplet Network 
maintains stronger validation performance under similar training conditions. Both models 
demonstrate strong potential for emotion recognition from thermal images. U-Net, originally 
developed for segmentation tasks, showed lower accuracy, possibly due to its emphasis on 
pixel-level reconstruction. SqueezeNet, while computationally efficient, exhibited limited per-
formance when applied to low-resolution, textureless thermal data.

In this study, the primary evaluation was based on overall accuracy metrics. While this pro-
vided insight into model performance across architectures, further analysis may include class-
wise metrics such as precision, recall, and F1-score, as well as confusion matrices, to better 
understand model behavior with respect to individual emotional categories.

The findings suggest that, with careful preprocessing and model selection, deep learning 
methods can be successfully applied to thermal image-based emotion recognition. These ap-
proaches may contribute to the development of non-contact, privacy-aware systems for affec-
tive computing, healthcare monitoring, smart environments, and human–machine interaction.

Conclusion
Each neural network architecture exhibits unique characteristics depending on the degree 

of data nonlinearity, the volume of training data, and the type of input. In this study, nonline-
arity was defined as the variability of thermal facial features under different emotional states. 
Due to the limited dataset size (821 thermograms), geometric data augmentation techniques 
such as rotation, flipping, scaling, and translation were applied to increase data diversity. 
The models were trained to classify six basic emotions from low-resolution thermal images. 
Among the evaluated architectures, Inception and Quadruplet Network achieved the highest 
classification performance, indicating their suitability for extracting discriminative spatial fea-
tures in thermographic data. CNN, U-Net, and SqueezeNet demonstrated lower but acceptable 
accuracy given the constraints of the data.

The results confirm the applicability of deep learning methods for thermal emotion clas-
sification. While the evaluation in this study was based on quantitative metrics, future work 
may include qualitative analysis approaches, such as visualization of feature importance and 
attention mechanisms (e.g., class activation maps or attention heatmaps), to explore how neu-
ral networks focus on informative thermal regions during classification. This could provide fur-
ther insight into the decision-making process of the models and contribute to improved model 
transparency. The findings suggest that with appropriate data preprocessing and model se-
lection, deep learning approaches can be applied to thermal imaging for contactless emotion 
recognition in applications such as healthcare, smart environments, and affective computing.
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