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OPTIMIZING QUANTUM ALGORITHMS FOR SOLVING 
THE POISSON EQUATION

Abstract: Contemporary quantum computers open up novel possibilities for tackling intri-
cate problems, encompassing quantum system modeling and solving partial differential equa-
tions (PDEs). This paper explores the optimization of quantum algorithms aimed at resolv-
ing PDEs, presenting a significant challenge within the realm of computational science. The 
work delves into the application of the Variational Quantum Eigensolver (VQE) for addressing 
equations such as Poisson’s equation. It employs a Hamiltonian constructed using a modified 
Feynman-Kitaev formalism for a VQE, which represents a quantum system and encapsulates 
information pertaining to the classical system. By optimizing the parameters of the quantum 
circuit that implements this Hamiltonian, it becomes feasible to achieve minimization, which 
corresponds to the solution of the original classical system. The modification optimizes quan-
tum circuits by minimizing the cost function associated with the VQE. The efficacy of this 
approach is demonstrated through the illustrative example of solving the Poisson equation. 
The prospects for its application to the integration of more generalized PDEs are discussed 
in detail. This study provides an in-depth analysis of the potential advantages of quantum 
algorithms in the domain of numerical solutions for the Poisson equation and emphasizes 
the significance of continued research in this direction. By leveraging quantum computing 
capabilities, the development of more efficient methodologies for solving these equations is 
possible, which could significantly transform current computational practices. The findings of 
this work underscore not only the practical advantages but also the transformative potential 
of quantum computing in addressing complex PDEs. Moreover, the results obtained highlight 
the critical need for ongoing research to refine these techniques and extend their applicability 
to a broader class of PDEs, ultimately paving the way for advancements in various scientific 
and engineering domains.
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Introduction 
In recent years, the field of quantum computing has garnered significant attention due 

to its potential for solving complex computational problems more efficiently than classical 
computers. One area of particular interest is the application of quantum algorithms to solve 
partial differential equations (PDEs), which have widespread applications in various domains, 
including structural mechanics [1]. PDEs are ubiquitous in modeling physical phenomena and 
are essential tools in understanding and predicting the behavior of systems governed by these 
equations. However, as [1] highlights, the computational complexity of solving PDEs increases 
exponentially with the dimensionality and resolution of the problem, making it challenging 
for classical computers to tackle large-scale or high-precision PDE problems.

This paper makes a significant contribution by focusing on the optimization of the Varia-
tional Quantum Eigensolver (VQE) for solving the Poisson equation. The motivation for this 
research arises from the limitations of classical computational methods in handling the com-
plexity of high-dimensional PDE problems. By leveraging quantum computing, we aim to de-
velop more efficient methodologies for solving these equations.

Early efforts in quantum algorithms for PDEs focused on the Harrow-Hassidim-Lloyd (HHL) 
algorithm [2], which demonstrated successful applications to the Poisson equation using cen-
tral difference approximations and simulations. Concurrently, researchers explored alternative 
quantum algorithms tailored for the Poisson equation, employing techniques like the Plouffe 
binary expansion method [3] and demonstrating their efficiency on quantum virtual comput-
ing platforms. 

More recently, Variational Quantum Algorithms (VQAs) have emerged as a promising av-
enue for tackling PDEs on near-term quantum devices. These algorithms optimize parame-
terized quantum circuits to approximate solutions, effectively mitigating the limitations im-
posed by finite qubit counts and noise inherent in current quantum hardware [4, 5]. Given the 
wide-ranging potential of variational quantum algorithms in PDE resolution, their utilization 
for addressing the specific challenge of solving the Poisson equation warrants special consid-
eration. The Poisson equation, extensively employed across physics and engineering domains, 
serves as a significant benchmark for showcasing the capabilities of quantum computing.

An initial quantum algorithm for the approximate solution of Poisson’s equation was intro-
duced in [6], demonstrating exponential speedup over classical algorithms while overcoming 
the “curse of dimensionality”. In [7], a variant of VQA was introduced, featuring a novel decom-
position approach wherein the data matrix is expressed as a sum of tensor products of simple 
operators. This method achieved an accuracy level of 0.99%, validated through numerical 
methods. In [8], an optimized VQA was presented for solving the Poisson equation, which re-
quired a small number of quantum measurements, regardless of the problem size, by defining 
the total potential energy as an expectation of observables decomposed into a linear combi-
nation of Pauli operators. In [9], an approach that used CRZ rotations to reduce the number of 
required qubits and gates was used, demonstrating low error rates and faster solution times 
compared to classical methods. In [10], to optimize VQA, a method was used involving the de-
composition of the coefficient matrix A into a minimal number of Hermitian, one-sparse, and 
self-inverse operators, which significantly reduces the number of measurements and circuit 
complexity.

In the realm of exploring challenges related to solving PDEs, notably the Poisson equation, 
on quantum computers, a thorough comprehension of the limitations and hurdles faced by 
VQA is paramount. In [11], an extensive examination of VQA’s performance in the context of 
Poisson equation resolution is conducted, shedding light on crucial aspects that constrain the 
current capabilities of quantum computing. Noteworthy findings include error detection even 
in noise-free quantum computing environments, trade-offs in estimating expected values, and 
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the considerable expense associated with gradient estimation, which significantly impacts 
solution accuracy and efficiency. These challenges underscore the imperative to optimize vari-
ational quantum algorithms to enhance their performance and achieve improved convergence 
in PDE resolution. Optimization of VQA entails devising novel strategies for error reduction, 
enhancing methods for expected value and gradient estimation, and exploring more efficient 
approaches for selecting and fine-tuning algorithm parameters.

In [12], an analysis of key methods for optimizing VQE was made in the context of compar-
ing their effectiveness. Diverse optimization strategies have been proposed for enhancing VQA 
performance. In [13], a novel method for executing the sine transform was developed, optimiz-
ing the algorithm by reducing circuit depth from n^2 to n. Quantum gate threshold errors were 
determined to ensure circuit output accuracy above 90%. Additionally, in [14], quantum par-
ametric circuit parameter optimization using Estimation Distribution Algorithms (EDA) within 
VQA was explored.  Results revealed statistically significant enhancements in minimizing the 
cost function compared to conventional optimizers, particularly with a low number of layers. 
Furthermore, in [15], the impact of error reduction strategies on VQA was examined. VAQEM 
presents a dynamically adaptable approach to error mitigation within VQA, tailored for re-
al-world quantum machines with noise. VAQEM showcased notable accuracy improvements in 
various applications on IBM quantum machines.

Regarding VQE, optimization strategies for enhancing its performance can be categorized 
based on specific stages of the algorithm, including initialization, parameter configuration, 
measurement, and others. In [16], the focus is on VQE initialization. Authors introduce a meth-
od named Variational Tensor Network Eigensolver (VTNE), which optimizes VQE initialization 
through classical simulation of quantum circuits using tensor networks, particularly matrix 
product states (MPS) with bounded link sizes. This pre-optimization technique aims to address 
challenges like barren plateaus, optimization in noisy conditions, and slow convergence com-
monly encountered in Noisy Intermediate-Scale Quantum (NISQ) devices. In [17], a strategy 
known as Qubit Reduction via Z2 Symmetries was investigated to enhance qubit efficiency 
and convergence rates. This method capitalizes on a qubit reduction scheme that exploits Z2 
symmetries of Hamiltonians, a concept previously introduced by Bravyi et al. The approach 
effectively minimizes the total number of qubits required, thereby reducing qubit manipula-
tions prone to errors. In [18], a tailored VQE kernel was devised, integrating prior knowledge 
of quantum circuits. Specifically, it aligns the functions of the map kernel with the VQE con-
straint and introduces a novel data collection feature called Expected Maximum Improvement 
in Confident Regions (EMICoRe). This feature optimizes by targeting parameters in regions 
of interest, effectively learning these areas as periodic observations. Such a strategy enables 
accurate estimation of the objective function over extensive spatial extents, often with im-
pressive accuracy — sometimes even with minimal data points. The methodology relies on 
physical principles to refine process optimization. Meanwhile, in [19], the impact of parameter 
configurations on optimization efficiency was scrutinized. Authors examined how different 
configurations influence the accuracy of analytically optimized single-qubit gates. They intro-
duced a new metric called configuration cost or C-cost to quantify the disparity in optimiza-
tion accuracy attributable to statistical errors in measurements. In contrast, [20] introduces a 
hybrid approach termed “Measurement Simplification”, tested across various VQAs including 
VQE and VQLS. This method simplifies the evaluation of quantum circuits by reducing the 
complexity of expressions used, leading to significant reductions in computation time and 
memory requirements.

The application of the HHL algorithm to the Poisson equation problem has found that 
quantum schemes minimizing the cost function may face optimization difficulties. In this con-
text, a method based on the Feynman-Kitaev formalism using the HHL algorithm and VQE 

DOI: 10.37943/18REAT9767
© Aksultan Mukhanbet, Nurtugan Azatbekuly, 
    Beimbet Daribayev



58 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

was proposed to obtain the complete evolution of the system after a single optimization of a 
well-defined cost function. The Feynman-Kitaev formalism was utilized to represent the Pois-
son equation as a quantum Hamiltonian, which was then solved using quantum algorithms 
such as the VQE.

Our approach employs a Hamiltonian constructed using a modified Feynman-Kitaev for-
malism, allowing the representation of classical systems in a quantum framework. This ena-
bles the optimization of quantum circuits by minimizing the VQE cost function, thus achieving 
the solution to the original classical system. The modifications introduced in our methodology 
enhance the performance and accuracy of quantum circuits, reducing computational resources 
required.

Effective optimization requires strategies that provide a sufficiently accurate solution in an 
acceptable number of iterations, which is necessary for the practical application of variational 
algorithms [21]. In this paper, the VQE is applied by adapting it to solve Poisson equations. 
The approach presented in this paper involves using the Feynman-Kitaev formalism to trans-
form a classical system in the form of a quantum Hamiltonian using quantum operators and 
states [22]. This allows us to optimize quantum schemes in such a way as to minimize the cost 
function corresponding to a particular VQE. This paper aims to demonstrate that optimizing 
quantum algorithms can significantly improve the process of solving VQEs by reducing com-
putational time and enhancing the accuracy of the results. 

In summary, this research optimizes quantum algorithms for solving the Poisson equation, 
demonstrating the practical advantages and transformative potential of quantum computing 
in addressing complex PDEs. Our findings underscore the importance of continued research in 
this area, with the aim of applying these techniques to a broader class of PDEs.

Methods and Materials
The sequential workflow commences with the formulation of a PDE problem and the selec-

tion of a method to solve it. In this case, the one-dimensional form of the Poisson equation is 
considered. Subsequently, the Feynman-Kitaev formalism is employed to transform the classi-
cal system into a quantum system, thereby enabling the utilization of quantum algorithms for 
solving PDEs. The sequential operation diagram is illustrated in Fig. 1.

Figure 1. Sequential algorithm optimization scheme
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Following this, VQE is adapted and applied to solve PDEs. This method involves the use of a 
parameterized quantum circuit ansatz, which is a series of quantum gates applied to the initial 
state of the qubits. The parameters of this quantum circuit are then optimized using the Adam 
optimizer to identify the minimum eigenvalue of the Hamiltonian, which corresponds to the 
solution of the PDE. The results obtained from the VQE algorithm are compared with the exact 
solution of the PDE, and experiments are also conducted on the “ibm_osaka” system from the 
IBM Quantum platform to evaluate the algorithm’s performance in practical settings.

Equations and discretization
The Poisson PDE describes the potential distribution φ(x) in a given region, governed by 

source terms f (x) (1):

(1)

where p is a function that determines the potential distribution in a given area. The func-
tion f (x) represents the sources in this area.

For Dirichlet-type boundary conditions in the region [a, b], where u(a) – ua and u(b) – ub, 
the equation becomes (2):

(2)

To numerically solve this PDE using the finite difference method, the spatial domain is dis-
cretized into a mesh of m grid points with spacing h – (b – a) / (m – 1). The differential operator 
is approximated by a finite difference operator (3):

(3)

This discretization transforms the Poisson PDE into a system of linear algebraic equations:

(4)

where, A is the coefficient matrix representing the discretized differential operators, x is the 
vector of unknowns (solution), b is the right-hand side vector containing the boundary condi-
tions and any source terms.

The matrix A arises from the discretization of the Poisson PDE using finite difference meth-
od. It encapsulates the coefficients resulting from the discretized differential operators within 
the computational domain. Solving the linear system Ax – b allows for the determination of 
the solution vector x, representing the approximate solution to the Poisson equation.

(5)

The vector b complements the coefficient matrix A in (6) and encompasses the boundary 
conditions, as well as any source terms present in the Poisson equation. Together with the 
matrix A, vector b forms a system of linear equations representing the discretized Poisson 
equation. Solving this system yields the numerical solution to the Poisson equation within the 
specified computational domain.

DOI: 10.37943/18REAT9767
© Aksultan Mukhanbet, Nurtugan Azatbekuly, 
    Beimbet Daribayev



60 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

(6)

Quantum Method
Note that the quantum state is mapped onto an exponential grid size. Therefore, the num-

ber of quantum resources depends linearly on the number of qubits n, and the discretization 
error decreases exponentially  . There are several ways to solve this linear system. 
For long-term applications, the HHL algorithm can be utilized for speedup. On IBM quantum 
computers, the VQE is considered.

The HHL algorithm is designed to solve systems of linear equations on a quantum computer 
with exponential acceleration compared to classical methods. It is based on the use of quan-
tum Fourier transform and phase estimation to find solutions, making it particularly useful in 
quantum linear algebra problems. The VQE algorithm is a hybrid quantum-classical method 
that is used to find the ground state of a quantum system. VQE minimizes system energy by op-
timizing parameterized quantum circuits using classical optimization algorithms. The classical 
part of the algorithm is to iteratively optimize the parameters of the quantum circuit in order 
to minimize the expected energy value. After each iteration, the quantum computer makes 
measurements to estimate the current energy value, which is then passed to a classical opti-
mizer. A classical optimizer, such as gradient descent or higher efficiency algorithms, updates 
the ansatz parameters and feeds them back to the quantum computer for the next round of 
measurements. This cycle is repeated until the minimum energy value is reached or until the 
process is stopped by other criteria.

Using VQE in combination with the Feynman-Kitaev formalism allows for efficient rep-
resentation and evolution of quantum systems, providing a detailed picture of quantum states 
and their dynamics. The Feynman-Kitaev formalism models the quantum computing process 
as a sequence of computational steps, making it easier to analyze and improve the algorithm.

The Feynman-Kitaev formalism, also known as the Feynman-Kitaev model, is a conceptu-
al approach to quantum computing that integrates the physical and computational aspects 
of quantum evolution. The basic idea is to consider the evolution of a quantum system as a 
sequence of logical operations similar to the steps of a classical computation, and to formal-
ize this evolution as a quantum computational problem. In the Feynman-Kitaev formalism, a 
quantum algorithm is modeled using a special Hamiltonian that describes the dynamics of the 
system. This Hamiltonian takes into account both the computational steps of the algorithm 
and the state of the quantum registers at each moment in time. The evolution of the system is 
determined by a time parameter, which can be considered as discrete steps of the algorithm. 
This approach allows us to represent a quantum algorithm as a single quantum process, which 
simplifies the analysis of its correctness and complexity.

The essence of the formalism is that each state of a quantum system can be associated 
with a specific computation step. For example, if a quantum algorithm consists of a sequence 
of elementary operations (gates), then each intermediate state of the system will correspond 
to a certain set of operations performed. The Hamiltonian in this case models the transitions 
between these states, ensuring the correct execution of the algorithm. Integrating the HHL 
and VQE algorithms with the Feynman-Kitaev formalism provides a powerful tool for solving 
complex quantum mechanics and optimization problems, as the formalism allows for efficient 
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representation and analysis of quantum computing processes, facilitating the synthesis and 
improvement of algorithms.

To solve the Poisson equation using a quantum approach, we need to map the classical lin-
ear system Ax – b into a Hamiltonian operator H that can be handled by a quantum computer. 
This mapping is achieved through the following steps:

(1)

where,  represents the conjugate transpose (Hermitian adjoint) of the matrix A obtained 
from the finite difference discretization. I is the identity operator, and |b) is the vector b (the 
source term) encoded as a quantum state.

To understand how this Hamiltonian formulation works, we can substitute the solution |x) 
(the desired potential x as a quantum state) and observe:

(1)

This shows that the Hamiltonian H annihilates the solution state |x), meaning that |x) is 
an eigenstate of H with eigenvalue 0. Therefore, by finding the ground state (lowest energy 
eigenstate) of H, we can obtain the solution |x) to the original linear system Ax = b, which 
corresponds to the solution of the Poisson equation.

The solution is encoded in the ground state H with eigenvalue 0. Hamiltonian can be con-
structed by using Poisson equation and transforming it into the corresponding Hamiltonian. 
The VQE algorithm is then used to optimize the parameters of the quantum circuit to find the 
minimum eigenvalue of this Hamiltonian, which will be a solution to Poisson equation.

The COBYLA (Constrained Optimization by Linear Approximations) optimizer is chosen for 
this paper due to its suitability for NISQ devices. COBYLA is a derivative-free optimizer that 
performs well under conditions where gradient information is not reliable or available. Its 
robustness against noise and simplicity in implementation make it an attractive choice for op-
timizing quantum circuits on current quantum hardware platforms. Specifically, for solving the 
Poisson equation, COBYLA’s ability to handle noise and its efficiency in finding the minimum 
eigenvalue of the Hamiltonian are crucial for achieving accurate results.

While the COBYLA optimizer is advantageous for its simplicity and robustness, it also has 
limitations. As a derivative-free method, COBYLA may require a large number of function eval-
uations to converge, which can be computationally expensive. Additionally, its performance 
can vary based on the problem’s complexity and the quantum device’s characteristics. For the 
Poisson equation, these factors are particularly important because the accuracy of the solution 
is highly dependent on the optimizer’s efficiency.

Results
This section elaborates on the specific quantum computational techniques employed to ad-

dress the Poisson equation, focusing on the configuration and optimization of a parameterized 
quantum circuit.

The quantum approach to solving the Poisson equation involves leveraging a parameter-
ized ansatz, a sequence of quantum gates applied to the initial qubit state to efficiently tackle 
the associated linear system problem. For this study, the EfficientSU2 ansatz is adopted, com-
prising layers of single-qubit rotation gates and two-qubit CNOT gates. Single-qubit rotations 
manipulate qubit state amplitudes, while CNOT gates establish entanglement between qubits.

The ansatz’s depth, governed by a depth parameter, determines how many times each layer 
repeats, enhancing the qubit state’s complexity and solution capability. Fig. 2 illustrates the 
quantum circuit.
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Figure 2. Quantum circuit for numerical solution of Poisson’s equation

To optimize the ansatz, transpilation is employed. Transpilation involves rewriting the input 
circuit to match a specific quantum device’s topology and/or optimizing it for performance in 
noisy quantum systems. In this study, transpilation with optimization level 3 is utilized, incor-
porating various techniques like gate reduction and operation order optimization to enhance 
the quantum circuit’s performance.

Consequently, the quantum scheme employs single-qubit rotation and two-qubit CNOT 
gates to prepare the qubit state best suited for solving the classical linear system. The VQE 
object integrates parameters such as ansatz, optimizer, and quantum instance, facilitating 
quantum computation of the Hamiltonian’s minimum eigenvalue. This energy value and the 
corresponding qubit state are stored for subsequent analysis.

The most optimal outcome obtained during the optimization process is retained for further 
scrutiny. Executing the quantum circuit across diverse quantum devices yields performance 
insights. Each optimization iteration provides details on the energy value discovered and the 
best result achieved thus far.

Fig. 3 compares the classical and quantum solutions obtained from the 8-qubit VQE with 
COBYLA for solving the Poisson equation across boundary conditions from 0.0 to 1.0. While 
the solutions converge at the extremes, the quantum approach exhibits an irregular profile 
with multiple local extrema, deviating significantly from the distinct U-shaped classical solu-
tion in the intermediate boundary region. This suggests the quantum algorithm may offer an 
alternative solution with accuracy advantages over the classical method for certain boundary 
conditions.

Figure 3. VQE results for 8 qubits, using the COBYLA optimizer
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Increasing the number of qubits augments the dimensionality of the state space of the 
quantum system, intensifying the complexity of the problem and subsequently impacting the 
error rate and execution time of the algorithm. The COBYLA optimizer demonstrates promising 
performance under these conditions.

After executing the VQE algorithm and obtaining the quantum solution, the mean square 
error (MSE) between the quantum solution and the exact solution is computed. The MSE serves 
as an indicator of the accuracy of the obtained quantum solution relative to the exact solution. 
It is calculated as the mean of the squares of the differences between each element of the 
quantum solution vector and the exact solution. 

Finally, the Poisson equation was tested using VQE on quantum simulator and real quantum 
hardware using the “ibm_osaka” system from the IBM Quantum platform.

The given results, in Table 1, contain the results of hardware experiments with quantum 
devices, where COBYLA optimizer was used for each device, and MSE between the quantum 
solution and the exact solution was calculated.

Table 1. Results of experiments with quantum devices using the COBYLA optimizer

Quantum devices Optimizer MSE
ibmq_qasm_simulator COBYLA 0.00042
ibm_osaka COBYLA 0.00164

These results allow us to compare the performance of VQE solutions of Poisson’s equation 
optimized with COBYLA on different devices. 

Discussion
This study highlights the challenges encountered when employing quantum algorithms, 

such as VQE, to solve PDE equations, particularly the Poisson equation. To address these chal-
lenges, a method utilizing the Feynman-Kitaev formalism in conjunction with the HHL and 
VQE algorithms was proposed. This approach enables the complete evolution of the system 
post-unit cost function optimization.

In this paper, adaptations of VQE algorithms were utilized for Poisson equation resolution. 
Leveraging the Feynman-Kitaev formalism facilitated the transformation of classical systems 
into quantum counterparts, enabling quantum circuit optimization to minimize the appropri-
ate cost function for specific problems. The objective was to showcase how optimizing quan-
tum algorithms can significantly enhance the PDE-solving process by reducing computational 
time and enhancing result accuracy.

Nevertheless, this approach faces several limitations. Limited access to quantum devices 
poses significant challenges for conducting extensive experiments. Additionally, the choice of 
optimizer for a VQE algorithm is critical to its performance. COBYLA’s ability to operate with-
out gradient information aligns well with the characteristics of quantum hardware, making 
it a practical choice for optimizing quantum circuits in the presence of noise. While COBYLA 
demonstrated promising results in this study (Fig 3.), further exploration of alternative optim-
izers tailored for specific quantum hardware configurations may yield insights into improving 
performance under varying conditions.

The results presented in Table 1 highlight the performance variations of VQE solutions 
across different quantum devices. Specifically, MSE values revealed significant insights into the 
accuracy and reliability of the quantum solutions. For instance, the MSE for the “ibmq_qasm_
simulator” was remarkably low at 0.00042, indicating a high level of precision in the quantum 
solutions produced. This suggests that the simulator’s environment, being ideal and noise-
free, allows for a more accurate execution of quantum algorithms. Conversely, the MSE for 
“ibm_osaka” was higher at 0.00164, reflecting a noticeable discrepancy in performance. This 
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increased error can be attributed to hardware-specific factors and the noise levels inherent to 
the physical quantum device. The difference in MSE values between the “ibmq_qasm_simula-
tor” and “ibm_osaka” highlights the impact of quantum hardware noise and imperfections on 
the accuracy of VQE solutions. These findings underscore the necessity for continued research 
into optimizing quantum algorithms for specific applications, as the MSE values indicate the 
accuracy and reliability of the quantum solutions relative to exact solutions.

Further research and development in this domain hold promise for devising more efficient 
methods for PDE resolution using quantum computing, thereby unlocking new avenues in 
various scientific and engineering disciplines.

Conclusion 
This study delved into optimizing quantum algorithms for solving PDEs, with a focus on 

the Poisson equation. While applying the HHL algorithm to the Poisson equation, it became 
evident that quantum schemes aimed at minimizing the cost function could encounter optimi-
zation challenges. In response, a method based on the Feynman-Kitaev formalism, integrating 
the HHL algorithm and VQE, was proposed.

Successfully adapting VQE to address Poisson’s equations involved leveraging the Feyn-
man-Kitaev formalism to transition classical systems into quantum ones. This adaptation fa-
cilitated the optimization of quantum circuits to minimize the cost function relevant to the 
Poisson equation, demonstrating the approach’s applicability to numerically solving the Pois-
son equation on a quantum platform.

Experiments utilized the COBYLA optimizer in conjunction with the VQE algorithm on var-
ious quantum devices. The performance of the VQE algorithm was evaluated using both a 
quantum simulator and real quantum hardware. Specifically, the experiments conducted on 
the «ibm_osaka» system from the IBM Quantum platform yielded mean square error (MSE) 
values of 0.00042 on the «ibmq_qasm_simulator» and 0.00164 on the «ibm_osaka» device. 
These results highlight the crucial role of the optimizer in determining the accuracy and con-
vergence speed of the VQE algorithm.

These findings lead to the conclusion that optimizing quantum algorithms holds significant 
potential for enhancing the solution process of partial differential equations. This enhance-
ment could lead to reduced computation time and improved result accuracy. Continued ex-
ploration in this field may yield more efficient methodologies for resolving PDEs via quantum 
computation.
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