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AN EVALUATION METHOD OF ENERGY CONSUMPTION AS 
AN OPERATION PARAMETER IN A CYBER-PHYSICAL SYSTEM

Abstract: The research of energy consumption in an Internet of Things network and its ana-
lytical evaluation is the goal of this work. The authors of this work concentrate on developing 
a model for calculating the actual gain in power consumption in order to estimate the actual 
energy required. The method suggests measuring the difference in energy usage under three 
primary battery-powered working modes to maximize a device’s lifetime. Due to the fact that 
each CPS device state has its own energy metrics, it is feasible to choose the best operation 
course for entire network. The presented technique is certainly viable, as demonstrated by the 
experimental examination of Zigbee and BLE devices. The comparison of power levels using a 
temperature sensor in three basic scenarios (power modes) dictates how the CPS device life-
time can be optimized. Multi-regime consumption models, in which the rates of charging and 
discharging are dependent upon the energy level, are analyzed in this paper. This work aimed 
to state an optimal energy consumption by finding the right balance between operational 
power and battery lifetime through mathematical modeling. Therefore, it is easy to determine 
the energy cost of power stage, for instance, to send data by setting the minimal duration of 
each working condition in terms of power consumption. Moreover, a reasonable balance of 
power consumption and battery lifetime which impacts the data collection from sensors is 
vital to the development of data extraction algorithms. The practical results depict how de-
vice should be accessible to be able to lose less power even during switching on/off or how 
operate more effective if it used for a short period of time. A long-term network could become 
a reality once battery life is optimized enough to not disturb a user.

Keywords: cyber-physical system; battery management; power consumption; mode; gain.

Introduction
Cyber-physical systems (CPS) represent the integration of physical processes with comput-

ing environments and communication networks [1]. These systems can be applied in various 
fields, such as home automation, smart buildings, etc. Lesch et al. [2] demonstrate a compre-
hensive CPS literature review and mention that a CPS has common features with an ambient 
intelligence, or the Internet of Things (IoT). Nowadays, due to the ability to provide greater 
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flexibility in operating parameters, IoT has emerged as a large-scale CPS based on the fact 
that any device has optimal networking possibilities that allow it to collect and exchange data. 
It means that IoT devices consist of software that connects embedded electronics to interact 
with the external environment and each other. Currently, the most commonly used commu-
nication protocols have penetrated all home automation areas, and without a stable power 
supply, some already familiar solutions become inaccessible. Regarding the direct developers 
of IoT devices, the market requires them to create suitable-to-use modules. Moreover, those 
modules, at the same time, should have low internal power consumption as well as a long 
service life.

The current level of improvement in CPS permits the usage of low-priced remote interfaces 
in the field of domestic automation, compared with wired solutions. Modern battery-powered 
IoT devices are gadgets with various autonomy levels and numerous different communication 
technologies supported, nevertheless, a few of these protocols are inconsistent with others 
or have different technical restrictions. At the same time, the focus of any user is to build an 
energy-efficient domestic network to gather physical data about a local environment perma-
nently without shutdowns.

The market will be dominated by small, affordable batteries with low energy losses as op-
posed to alternative autonomous options [3]. The cost-effective, energy-efficient, data-driven, 
and adaptable automation of CPS has been made possible by recent developments in low-cost 
and low-power Internet of Things technology. However, when hundreds of additional IoT de-
vices are joined to a single network, the amount of energy needed to power these systems and 
supporting infrastructures will be immense. IoT devices are typically made with low battery 
capacity, low processing power, restricted memory, and low-power communication protocols in 
order to keep them compact and inexpensive for mass commercial adoption [4]. Consequently, 
it is crucial to take into account metrics such as energy consumption, which defines the bat-
tery’s lifetime, while selecting autonomous IoT devices.

Modern IoT manufacturers build their products without the necessary security safeguards 
as it has its own ecosystem. Furthermore, IoT devices require non-constant execution times 
for typical security algorithms, it is difficult to deploy them as sophisticated mechanisms due 
to their computing, communication, and energy restrictions [5]. Thus, the key limitation when 
developing and implementing IoT networks and devices is to outline a fair balance between 
power consumption and battery life. An autonomous IoT device’s design specs should be spec-
ified to guarantee a longer lifespan – the time amount needed to low the battery’s energy. In 
order to evaluate the lifespan of an IoT device, optimization modeling frameworks have been 
presented in this study to create a link between send data and battery characteristics. 

The purpose of the work is to propose an optimization method and its practical validation 
for CPS power performance, as well as research the complex structure of energy consumption 
in various operating modes. The objective is the formulation of optimization effects in terms 
of energy savings. The paper is organized as follows: Related work section demonstrates other 
adapted studies and its analysis employed in a field on IoT device energy consumption, Oper-
ational parameters section depicts adjusted working characteristics inside the CPS to display 
the importance of power consumption as a lead factor of successful data exchange. Then, 
focusing on three different battery activity modes, authors elaborate on analytical model of 
energy metrics optimization and its practical evaluation leading to all employed conclusions. 

Related Work
Bundalo [6] describes CPS in terms of execution time to estimate a peak energy perfor-

mance that leads to a half-reduction in consumption. The author gives a summary of CPS and 
highlights its difficulties such as the development of energy-efficient structure. The study also 
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discusses methods for enhancing embedded computer systems’ energy efficiency while con-
centrating on variables that influence power usage. Each power mode utilization is a method 
of power management when reducing the power consumption of each individual module, the 
total power consumption may be reduced.

Morella et al. [7] state that low-powered data acquisition is the first step for a CPS power 
performance optimization. In the modern world, an energy capacity is becoming more and 
more important as maintainability becomes a fundamental concern. Rechargeable batteries 
are becoming much more common in this market because of their many points of interest. 
They are being accepted as the control supplier in a wide variety of application scenarios, in-
cluding CPS. Specifically, lifetime projection is widely regarded as new research since it may 
help assess the Quality of Service to support maintenance.

Energy storage has a significant impact on human life as well as industrial production, and 
its popularity is growing as the global eco-community places greater emphasis on sustaina-
bility. Since many crucial CPS equipment (electric cars or portable devices) rely on recharge-
able batteries, which considered as a special kind of energy storage technology helpful in a 
variety of application [8]. The usage of electric vehicles rather than fossil fuel-powered ones 
is encouraged by the present attempts towards carbon neutrality, which in turn promotes the 
development of high-quality rechargeable batteries with high capacity, energy density, safety, 
and prolonged cycle life [9]. Furthermore, a key element in guaranteeing the high efficiency, 
reliability, and security of rechargeable batteries is an efficient management strategy when in 
use [10].

Additionally, researchers concentrate on battery management systems using CPS frame-
works, tracking important performance parameters (state of charge or remaining lifespan) 
and making use of connection features to enable data gathering, archiving, and analysis [11]. 
Rechargeable batteries and CPS now have a mutually beneficial connection in which CPS is 
utilized to encourage and support the usage of rechargeable batteries as energy sources. By 
dispersing precise energy, this data may be utilized to maximize battery life and save opera-
tional expenses [12].

Since it demonstrates how a rechargeable battery is sustainable, the battery lifespan is one 
of the most significant KPIs for battery management [13]. Cycle life, or the number of cycles 
until residual capacity falls to less than 80% of the stated amount, is referred to as a recharge-
able battery’s “lifetime” [14]. The forecast of battery lifespan is an important problem since it 
serves as a crucial reference for many choices, such as energy consumption control, charging 
procedure optimization, and temperature management.

Furthermore, lifetime prediction may be useful in many other scenarios, such as accel-
erated R&D or manufacturing, where it can assist decision-makers in finding products with 
longer projected lifespans. Battery lifetime prediction may be divided into several types: mod-
el-based, data-driven, or hybrid approaches [15]. The physical model of the battery (such as an 
analogous electric circuit model) is usually created using model-based techniques. This model 
may then be used to estimate the point at which the capacity will fall below the threshold and 
anticipate the deterioration pattern. Since hybrid approaches estimate the residuals of future 
state estimations using machine learning techniques, they are more accurate than pure mod-
el-based approaches. This is due to the fact that they effectively depict the dynamics of the 
pattern of degradation in the future [16]. In order to establish the battery status update, both 
model-based and hybrid systems rely on an accurate physical model. 

Since energy is taken from the battery and is not refilled, the authors [17] modeled the 
energy depletion process of an IoT device’s battery as a pure Markovian process (Stochastic Op-
timization) without gathering energy data. The authors investigated how energy usage affects 
an IoT device’s lifespan using their model. The proposed model’s drawback is that the quantity 
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of energy consumed in a unit of time is distributed exponentially. To overcome this constraint, 
a model considers energy as a continuous variable. It is not compulsory to consider the time 
takes to use one unit of energy, as it might even be predictable. 

Moreover, energy processes are considered to be energy states, which is equivalent to the 
power required to switch on and send a specific quantity of data. The examination of device 
energy gain determines the time-dependent energy transition rates between states. The sim-
ulation-validated analysis model is employed in this paper to examine how a battery lifetime 
affects a device performance in a CPS as an IoT network.

CPS operation parameters
The main goal of the authors’ [18] prediction is to identify the parameter that has to be ad-

justed in order to enhance a CPS’s ability to collect and process data from its working environ-
ment. The CPS operation parameters are displayed in Table 1 and may be explained as follows.

Table 1. CPS parameters analysis.

Parameter Description Optimization result
Latency Time required to transfer information 

from sensors to actuators and back.
Optimizing latency can improve the 
system's response to changes in the 
environment.

Throughput The amount of data that the system 
is capable of processing in a certain 
period of time.

Bandwidth optimization can improve the 
efficiency of communication between 
CPS components.

Energy 
Consumption

The amount of power consumed by 
the CPS when performing certain 
operations.

Optimizing energy consumption can 
increase system autonomy and reduce 
resources load.

Security CPS security from external threats and 
the ability to maintain operation in the 
face of cyberattacks.

Security optimization includes improving 
encryption, authentication, and access 
control mechanisms.

Reliability The ability of the CPS to perform its 
functions without interruption or failure.

Reliability optimization includes the 
development of redundancy and recovery 
mechanisms, as well as the prevention of 
failure situations.

Adaptability The ability of the CPS to change its 
behavior or parameters in response to 
changes in the environment.

Optimizing adaptability can improve a 
system's ability to cope with dynamic 
conditions.

Scalability The ability of CPS to expand or 
contract efficiently based on changes 
in requirements or the volume of data 
processed.

Scalability optimization can ensure 
system stability as load increases.

The CPS network architecture proposed by the authors in [19] uses embedded gateway 
technology as a mediator to link diverse devices. The gateways’ basic functioning concept 
depends on meeting criteria for security, dependability, adaptability, and scalability. Since the 
user may add any device, even one that is incompatible with the present network infrastruc-
ture, the system with gateway can be grown both horizontally and vertically. The most recent 
response information or the device’s real-time status can be obtained by the user. The CPS 
devices are able to transmit messages of any size across the gateway, but they are unable to 
begin identical tasks. As it provides encoded data, Getaway enables the transmission of set-
tings and a suitable answer to the asking device without causing any disruptions. 

Assessment techniques for the remaining CPS operating parameters (Latency, Throughput, 
and Energy Consumption) could involve creating algorithms for optimal sensor data collec-
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tion, enhancing models, utilizing software to adjust to environmental changes, and enhancing 
the efficiency of data processing and decision-making [20]. Processes that reliably and effi-
ciently accept sensor data are examples of optimized data collecting algorithms. Informed 
decision-making and network performance are directly impacted by the quality and relevancy 
of data, making this a crucial component.

CPS energy consumption 
An actuator, a CPU, a communication component, a power source or an energy storage (bat-

tery) make up an IoT device [21]. Digital data is generated by the sensors after they collect the 
necessary physical data from the environment. After that, the data may be transferred to cloud 
(fog) computing data centers for a lighter and more in-depth study. Furthermore, by translat-
ing these digital signals into mechanical motions, actuators may be utilized to power a CPS. 
In order to assess power loss in a device, a battery is a component that analyzes the residual 
capacity or thermal profile. A battery in certain IoT devices offers independent status updates 
on power-saving options [22]. 

The time required to deplete completely the battery of an IoT device can be considered as 
its lifetime. The vast majority of IoT devices run on rechargeable lithium-based batteries. To 
mimic the battery degrading process, comprehensive data on the energy consumption profile 
of IoT devices is required. Various operating modes, communication protocols, low-power mi-
crocontroller processing, and CPS adjustment are some of the energy-saving approaches used 
to lower energy usage. Through a calculation of the device’s average power consumption in 
different operation modes, the average power consumption of an IoT device throughout the 
course of its battery life was determined. 

Battery activity periods
Wireless sensors are expected to revolutionize the way a common user monitors environ-

mental parameter. However, the limited battery life of self-powered devices is holding back 
their widespread adoption. If a wireless sensor’s functionality is entirely dependent on its 
built-in, non-removable battery, and the battery runs out, it becomes just unnecessary junk. A 
common way to increase a battery lifetime is to use the “pulse” principle of device operation: 
short periods of activity are followed by long periods of rest. IoT-device engineers try to make 
periods of activity as short as possible and periods of rest as long as possible. Due to the fact 
that a user wants the battery of an IoT device to last several years without changing. Power 
consumption and expected battery life require accurate load measurement under different 
operating states of the device.

Figure 1. Wireless sensor current consumption levels in three main modes.
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The working states of a wireless sensor can be divided into a series of periods of activity, 
each of which requires a certain level of energy for a certain period of time [23]. In general, 
there are three customizable operating states (Figure 1):

• Active Mode – all modules are on, constant data exchange, peak consumption.
• Standby mode (Sleep Mode) – all radio modules are turned off, data is collected and 

every few seconds the device wakes up to send a message (check status).
• Hibernation Mode – everything is disabled, data is not saved, waking up only by timer.
A sleep mode is a state where all unused peripherals are cut off. To maintain connections in 

a sufficient way, a device needs to wake up at regular intervals. During this, the battery switch-
es between active and hibernation modes. Manufacturers design the device so that it spends 
most of its time in sleep mode with minimal consumption in current indices. In hibernation 
mode, only the real-time clock functions are used. By setting the timer, the device wakes up to 
perform measurements and then transmits data to the server.

Evaluation
Most traditional optimization techniques rely on mathematical models that belong to re-

al-time dynamic procedures and provide an equation-based description of the process. Any 
optimization problem involves steps like identifying constraints, analyzing the process to be 
reduced, and modeling the mathematical function of the power consumption. An approach to 
implementing energy consumption evaluation based on the following algorithms is shown in 
Table 3. 

Table 2. Proposed method of an energy consumption evaluation 

# Evaluation stage Description Application 
1 Experimental Empirical data collection 

on real energy consumption
Analysis of energy efficiency through the 
log database (accumulated data) and 
comparisons with situations that are as 
similar as possible to the current case 
to create a set of energy consumption 
scenarios.

2 Analytical model Mathematical models for 
energy gain calculation

IoT networks with a large number of 
parameters, where an efficient energy 
consumption is required as structured 
data is absent.

Stage 1. Experimental
The process begins with the formation of energy consumption requirements. The first step 

towards measuring device parameters is collecting data on energy consumption. A battery 
contains a certain amount of energy, W·h, and has a capacity, estimated in mA·h described in a 
IoT device battery datasheet. If the power consumed by the device is known, then the battery 
life can be calculated using the formula:

(1)

In accordance with this, the battery operating time can be expressed by the following for-
mula:

(2)
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On the other hand, battery energy is equal to the product of the voltage (V) and the battery 
capacity (A·h). The actual voltage is the empirically obtained on the battery discharge curve 
(Figure 2), which correctly relates to its State of Charge (SoC).

Figure 2. Loss in State of Charge as a discharging curve.

Manufacturers usually calculate State of Charge through battery voltage, as it is easy and 
doesn’t require much effort [24]. The only problem is that the monitored voltage values are 
difficult to read, their rise/fall are non-linear (Figure 2), and they change under different oper-
ating conditions. However, in real-world conditions, actual battery life is usually less than esti-
mated. This is usually explained by poor battery quality. As IoT manufacturers provide detailed 
battery specifications, however, it can be stated that there is a variation in actual capacity 
within 1 out of 10 same-type batteries, so the device stops working sooner than expected [25].

Another approach is to calculate operating time on the device empirically. Considering two 
time periods, for instance, a 60-min interval, calculate the amount of battery charge that was 
depleted during that period (device drained 3% of battery in the 1st hour, 5% during the 2nd 
hour, 2% in next 60 minutes). Then a user can make an average of these values and obtain the 
result that device consumes approximately 3% charge per hour. Using this 3%-delta and the 
duration over time, it becomes easy to calculate the expected battery life as follows:

(3)

Most IoT manufacturers are aware of the battery characteristics of the devices they produce. 
If a device had one firmware installed but was never updated, then it would likely consume the 
same amount of energy on average day after day over its lifetime. At the same time, IoT soft-
ware can be constantly updated. The device software is what makes IoT companies unique and 
valuable, so keeping their equipment up-to-date is vital. However, such updates often entail a 
certain regression of devices and can significantly reduce battery life.

Stage 2. Analytical model
To optimize the energy consumption in a CPS, it is necessary to compose function to max-

imize the battery life of the entire network, without reducing its functionality. Thus, energy 
consumption (EC) of the i-th device spent on one transmission can be calculated using the 
formula:

(4)

where PA – power consumption of the i-th device in active mode required for 1 kb data, 
TA - data transmission time, D - transferred data size in kb. Also, TS – stands for a time range 
when a device is in a sleep mode, PS – power consumption in a sleep mode. Moreover, TH is 
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a duration of hibernation operating state and PH is device consumed power during the hiber-
nation status. 

Consequently, P is a number of data packets transmitted within curtain t-interval and aver-
age T-interval between packets transmission:

(5)

The total consumption of the device during time t will be following:

(6)

Therefore, it is easy to determine the energy cost of each node for sending a certain quan-
tity of data by knowing the duration of each working condition. Creating techniques and pro-
tocols that effectively and precisely influence data collection from sensors is vital to the de-
velopment of data extraction algorithms. The review of IoT operational parameters pertains 
to enhancing its effectiveness, precision, or flexibility in response to dynamic conditions, such 
as changes in data attributes. This is a crucial area of study as well-informed decision-making 
and system performance are directly impacted by the accuracy and relevancy of the data.

Case study
The performance and energy usage of an energy-efficient CPS network are significantly 

impacted by the connection technology selected. Low-power consumption IoT devices are 
made for long-range connectivity, whereas short-to-medium communication ranges are ideal 
for battery-powered IoT devices. Power consumption is influenced by operational range, data 
rate, and power employed between two nodes. Currently, practically every IoT module that 
is available for self-development supports Zigbee or BLE protocols. Power consumption is a 
major constraint for IoT devices since they are likely to have to depend on batteries. Some IoT 
devices can be powered from the mains, for example a smart power socket or central tem-
perature controller. It is interesting to note that commercial examples of such devices often 
already incorporate Wi-Fi modules.

According to Table 3, BLE and Zigbee have low power consumption, which makes them 
appropriate for energy-efficient applications and battery-powered devices. Short-range com-
munication between devices, including smartphones and other consumer electronics, is facil-
itated by BLE. Security systems, thermostats, and smart lighting are just a few of the gadgets 
that employ ZigBee technology, which is intended for home automation. It is obvious that 
Wi-Fi protocol uses more energy than other presented standards. This is due to maintaining 
constant wireless connections and enabling fast data transfers use more energy. 

Table 3. Comparative analysis of IoT protocols.

IoT protocol Description Range Data Transfer Rate Energy 
Consumption

Wi-Fi well-suited for connecting 
devices with high bandwidth 
requirements.

~ 10-200 m 100 Mbps - 1 Gbps Moderate
~ 250 mA

Zigbee supports extended range and 
scalability with low latency.

~ 10-100 m 20 - 250 Kbps Low
~ 50 mA

Bluetooth Low 
Energy

suitable for short-range 
connections in close 
proximity.

~ 10 m 1 Kbps - 1 Mbps Low
~ 13 - 40 mA
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However, mobile IoT devices, such as remote controls or smart buttons, are powered from 
batteries and use alternative wireless technology such as Bluetooth Low Energy (BLE). Hort-
elano et al. [26] described how to use BLE mesh technology to reduce an IoT’s power usage. 
The study covers burst transmissions and an IoT network with low power sensor nodes. Con-
versely, Zigbee provides an option as a wireless protocol created especially for sensor appli-
cations requiring less power. BLE connects faster and wakes up far faster than Zigbee, which 
wakes up much slower and uses more power, according to research in [27].

At specific active periods, a 9-bit data packet was broadcast via the experiment setup de-
scribed in this study. A further part of the installation equipment came with the Expressif 
ESP8266 chipset and BLE beacon. For experimentation, two considered cases are when State 
of Charge capabilities of the two devices (ESP8266 as a Zigbee protocol and BLE beacon as 
BLE) are used to power a temperature sensor (DS18S20) and calculate its consumption. The 
total power consumed in two cases is calculated using Equation (4).

Table 4. Experimental results by Analytical model

Duration 
ESP82 (Zigbee)

E total (9bit packet size) 
BLE beacon 

E total

Active Standby Hibernation Scenario 1 Scenario 2 Scenario 3

1 min ~ 20 mW ~ 31 mW ~ 14 µW ~ 15 mW ~ 15 mW ~ 2.6 µW

In the first scenario, a network is built with one of the battery-based pieces of equipment 
integrated with a temperature sensor and can be considered to be in Active mode (Table 4). 
Temperature sensor is connected to GPIO pin on the ESP8266. Assuming that, the Zigbee de-
vice would read the temperature data and transmitting it. In the second case, a temperature 
sensor is plugged out of the network making the chip battery operate in Standby Mode. Regard-
ing the third state of the network, the chip is disconnected from the network assuming it is in 
Hibernation status. Energy gain obtained during operation modes described as:

(7)

Table 5. Actual gained energy comparison

Basic Power Consumption Energy Gained Energy Gain

Zigbee ~ 20 mW ~ 6 mW ~ 30 %

BLE ~ 15 mW 0 mW  0 %

Zigbee depicts a slight power change with a 30% increase (Table 5). The longer the sensor 
node can stay in a low-power state and save energy, the shorter the duration in this mode will 
be. However, long sleep periods reduce the device’s battery life cycle. If real-time monitoring 
is not necessary, then it makes sense to allow the device to sleep for a shorter period of time, 
and then transmit any data collected during that time as a single packet. IoT technologies that 
are intended for ultra-low power applications, such as Bluetooth Low Energy, can save energy 
costs and enhance network performance. BLE has lower overall power consumption than Zig-
bee. Since BLE uses almost the same amount of energy to run processes, it can spend more 
time sleeping, thereby not using much power. Overall, BLE consumes less power than Zigbee, 
allowing the device to remain in low-power sleep mode for longer periods of time, thereby 
contributing to solutions to problems associated with real-time data monitoring. Using BLE, 
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new devices discovering can help extend the lifetime of a sensor node by providing real-time 
data monitoring only when needed.

Based on the results of this experiment, when the temperature sensor is combined with 
chipsets such as ESP8266 or BLE, BLE is energy efficient for use in IoT devices, but battery 
powered Zigbee based IoT devices are practical. The results demonstrated the fact that Zigbee 
is effective when used for a short period of time. In case if a module is not utilized in the oper-
ating mode for a predetermined amount of time, the suggested method progressively switches 
it into low operating modes.

Here are some key effects on the device’s operation after its power consumption is analyzed:
• Data collection frequency, avoiding overcoming excessive loads.
• Appropriate sensor selection to fulfill CPS power parameters.
• Data compression, filtering, and processing with low-powered algorithms.

Conclusion
The authors’ goal in this study is to develop a model that can be used to effectively calcu-

late the growth in consumption in order to estimate energy consumption (power) in CPS. The 
article suggests figuring out the difference (increase) in energy usage under the three primary 
battery-powered working modes to maximize a device’s lifetime. The ideal course of action for 
utilizing the item may be ascertained by examining the varying power consumption figures 
of each mode. The suggested approach’s feasibility is well demonstrated by the experimental 
evaluation.

Due to their low power consumption, BLE and Zigbee protocols are appropriate for bat-
tery-powered devices and energy-efficient applications. Short-range communication between 
devices, including smartphones and other consumer electronics, is facilitated by BLE. The ma-
jority of well-known home automation stations and gadgets, including security systems, smart 
lighting, and thermostats, are based on ZigBee connectivity. Enabling fast data transfer and 
maintaining constant wireless connections consumes more energy, hence reducing the total 
lifespan of the device.

Proposed evaluation method solely describes the time-dependent energy rates. The pace at 
which the battery content varies is determined by the disparity between power consumption 
in three various battery modes. In order to assess different energy-management strategies and 
examine the battery life of an IoT device it is necessary to analyze multi-regime consumption 
models in which the rates of charging and discharging are contingent upon the energy level.
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