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STATISTICAL PROPERTIES OF THE PSEUDORANDOM 
SEQUENCE GENERATION ALGORITHM

Abstract: One of the most important issues in the design of cryptographic algorithms is 
studying their cryptographic strength. Among the factors determining the reliability of cryp-
tographic algorithms, a good pseudorandom sequence generator, which is used for key gener-
ation, holds particular significance. The main goal of this work is to verify the normal distribu-
tion of pseudorandom sequences obtained using the generation algorithm and demonstrate 
that there is no mutual statistical correlation between the values of the resulting sequence. If 
these requirements are met, we will consider such a generator reliable. This article describes 
the pseudorandom sequence generation algorithm and outlines the steps for each operation 
involved in this algorithm. To verify the properties of the pseudorandom sequence generated 
by the proposed algorithm, it was programmatically implemented in the Microsoft Visual C++ 
integrated development environment. To assess the statistical security of the pseudorandom 
sequence generation algorithm, 1000 files with a block length of 10000 bits and an initial 
data length of 256 bits were selected. Statistical analysis was conducted using tests by D. 
Knuth and NIST. As shown in the works of researchers, the pseudorandom sequence genera-
tion algorithm, verified by these tests, can be considered among the reliable algorithms. The 
results of each graphical test by D. Knuth are presented separately. The graphical tests were 
evaluated using values obtained from each test, while the chi-squared criterion with degrees 
of freedom 2k – 1 was used to analyze the evaluation tests. The success or failure of the test 
was determined using a program developed by the Information Security Laboratory. Analysis 
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of the data from the D. Knuth tests showed good results. In the NIST tests, the P-value for the 
selected sequence was calculated, and corresponding evaluations were made. The output data 
obtained from the NIST tests also showed very good results. The proposed pseudorandom se-
quence generation algorithm allows generating and selecting a high-quality pseudorandom 
sequence of a specified length for use in the field of information security.

Keywords: cryptography; algorithms; random sequence; pseudorandom sequence; statisti-
cal testing.

Introduction (Literary review)
The information security system must address tasks such as protecting the confidentiality 

of information or its critical components, verifying the authenticity of subjects and objects 
involved in information transmission, safeguarding information from unauthorized access by 
non-authorized users, protecting the rights of users who own the information, managing infor-
mation, and operationally controlling the processes of information transformation and trans-
mission. To solve these problems, cryptographic algorithms are used, including information 
hashing methods. The binary sequence obtained as a result of the hashing process can also be 
considered a pseudorandom sequence (PRS) [1,2].

Random numerical sequences are used in various fields of scientific research, one of which 
is cryptography. In cryptography, random sequences play an important role as they are used, 
for example, to generate initial parameters for cryptographic algorithms and protocols, as 
well as to create high-quality keys in stream cipher algorithms [3]. The random uniform dis-
tribution of ciphertexts obtained using algorithms that utilize high-quality keys ensures the 
statistical security of the algorithm [4,5]. An algorithm that generates pseudorandom numbers 
or independent sequences using certain mathematical methods is called a pseudorandom 
number generator or sequence generator (PRNG).

In most encryption algorithms, especially in stream ciphers, key sequence generators are 
used. A key sequence generator outputs a stream of bits that appears random but is actual-
ly deterministic and can be precisely reproduced on the recipient’s side [6,7]. The more the 
generated stream resembles a random sequence, the longer it will take for a cryptanalyst to 
break the cipher. However, if the generator produces the same sequence each time it is ini-
tialized, breaking the cryptosystem becomes a trivial task. For example, in the case of stream 
ciphers, if an attacker intercepts two encrypted texts, they can XOR them to obtain the two 
original texts XORed together. This makes the system very easy to break. If an attacker has 
a plaintext-ciphertext pair, the task becomes even simpler. Therefore, it is assumed that all 
random sequence generators must be key-dependent. This dependency ensures that simple 
cryptanalysis is impossible. The structure of a key sequence generator can be represented as a 
finite state machine with memory, consisting of three blocks: a memory block that stores the 
state information of the generator, an output function that generates a bit of the key sequence 
based on the state, and a transition function that determines the new state the generator will 
transition to in the next step [8].

Currently, there are several thousand different variants of pseudorandom number genera-
tors. Let’s consider the main methods of generating pseudorandom sequences that are most 
suitable for computer cryptography. 

Linear Congruential Generator (LCG). The main advantages of linear congruential genera-
tors are their high speed due to the small number of operations per byte and their simplicity 
of implementation. Unfortunately, these generators are rarely used in cryptography because 
they are predictable. Specifically, LCGs cannot be used for constructing stream ciphers, as their 
predictability makes them vulnerable. For example, stream ciphers based on LCGs were first 
broken by Joan Boyar, who also successfully broke quadratic generators [9].
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Among the most promising types of PRNGs are those based on shift registers with nonline-
ar feedback, specifically using so-called stochastic summators or R-blocks. This work general-
izes the results obtained from studying PRNGs based on linear feedback shift registers (LFSR) 
to the generation of PRNGs using stochastic summators in the feedback loop (RFSR, Random 
Feedback Shift Register). Specifically, it examines the principles of constructing nonlinear 
PRNGs of length 2n – 1 and 2n, as well as universal generators that ensure any predefined peri-
od and pre-period values of the generated sequences, where n is the number of memory ele-
ments in the generator consisting of N registers, each with a word length of n (Q = nN). LFSRs 
are decent random number generators but have undesirable properties. The bit sequences 
they generate are linear, which makes them unsuitable for encryption. For an LFSR of length n, 
the internal state can be determined from n output bits of the generator. Even if the feedback 
scheme is unknown, it is sufficient to have 2n output bits to deduce it. Large random numbers 
generated from consecutive bits of an LFSR are highly correlated and sometimes not truly 
random. Nonetheless, LFSRs are quite often used as fundamental encryption algorithms [10].

There are several tests used to evaluate the statistical properties of sequences, with the 
most commonly used ones being:

• DieHard Tests [11]: A suite of statistical tests proposed by George Marsaglia, a mathema-
tician from Florida State University, USA.

• NIST Tests [12]: A set of statistical tests developed by scientists from the National Insti-
tute of Standards and Technology (NIST), including Andrew Rukhin and others.

• TestU01 [13]: A suite of statistical tests developed by Pierre L’Ecuyer and other research-
ers from the University of Montreal.

• RaBiGeTe [14]: A suite of statistical tests complemented by a graphical interface for use 
in Windows.

• Knuth’s Tests [15]: A suite of statistical tests proposed by Donald Knuth, a scientist from 
Stanford University.

These tests evaluate the generated binary sequences against various statistical criteria to 
check for randomness.

Methods and Materials
Knuth’s Tests. Knuth’s tests for studying the statistical properties of sequences include both 

graphical and evaluative tests [15]. 
In graphical tests, the statistical properties of the generated sequences, which are used for 

qualitative assessment of the results, are represented visually.
Graphical Tests by Donald Knuth:
• Histogram of Sequence Elements Distribution;
• Distribution on the Plane;
• Runs Test;
• Monotonicity Check;
• Autocorrelation Function;
• Linear Complexity Profile;
• Graphical Spectral Test.
Let’s take a closer look at the characteristics of the graphical tests proposed by Donald 

Knuth [16,17]:
Histogram Distribution Test of Sequence Elements. This test allows us to assess the uniformity 

of the distribution of symbols in the examined sequence, as well as to determine the frequen-
cy of occurrence of a specific symbol. The histogram is constructed as follows: the number of 
occurrences of each element in the examined sequence is counted, and then a graph is plotted 
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showing the dependence of the number of occurrences of the elements on their numerical 
representation.

Plane Distribution Test. This test is designed to identify relationships between the elements 
of the sequence we are studying. Distribution on the plane is performed as follows: points 
with coordinates (ei; ei+1) are plotted on a field of size m × m, where  
are the elements of the studied sequence, n is the length of the sequence, and m the size of 
the alphabet. 

Runs Test. This test assesses the uniform distribution of symbols in the studied sequence by 
determining the frequency of occurrence of 0s and 1s in a series consisting of k bits. It iden-
tifies how many times zeros, ones, and series consisting of two, three, etc., bits appear in the 
examined sequence.

Monotonicity Test. This test counts the lengths of increasing and decreasing segments of the 
examined sequence elements. The studied sequence is graphically represented as consecutive, 
non-overlapping segments of non-increasing and non-decreasing elements.

Autocorrelation Function (ACF) Test. This test is designed to evaluate the correlation between 
shifted copies of the obtained sequence.

Bitwise ACF. The bitwise ACF is defined as follows: the examined sequence is considered 
as a bit sequence, after which the obtained bit sequence is normalized (1 → 1,0 → – 1), and 
correlation spikes are calculated using formula (1): 

(1)

where bi are the elements of the normalized sequence, n is the length of the normalized bit 
sequence, .

Bytewise ACF. First, the examined sequence E is normalized. Let ar–1 ar–2…a0, (where r is the 
bit width of the number) be the binary representation of the sequence. The normalized value 
of the elements is then computed using formula (2), and the correlation spikes are computed 
using formula (3):

(2)

Next, the autocorrelation spikes are calculated similarly to the bitwise ACF using the for-
mula:

(3)

Linear Complexity Profile Test. The following approach is used to create a linear complexity 
profile: suppose we have a binary sequence t = t1 t2 t3…tn of length n. We sequentially consider 
subsequences t (k), which contain the first k elements of the sequence, and plot a graph show-
ing the dependence of the linear complexity on the length of the subsequence N.

Graphical Spectral Test. This test allows for the assessment of the uniformity of the distribu-
tion of 0s and 1s in the examined sequence based on the analysis of the height of the peaks 
in the Fourier transform. Suppose t = t1 t2 t3…tn is a binary sequence of length n. We transform 
it into a sequence x1 x2 x3…xn, where xi=2ti–1 (т. е. 1 → 1,0→ – 1). 

Now, we apply the discrete Fourier transform to x and obtain the sequence of harmonics Sj 
as shown in formula (4):

(4)
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Knuth’s Evaluation Tests. The following statistical tests by D. Knuth were used to determine 
the randomness properties of the sequence:

• Runs Test;
• Monotonicity Test;
• Intervals Test;
• Combinations Test;
• Coupon Collector’s Test;
• Permutation Test;
• Correlation Test.
Let the test results be such that they can be divided into k категорий. categories. We con-

duct n независимых испытаний, где n is a sufficiently large number. Let ps be the probability 
that the result of a trial falls into the sth category, and Ys be the number of trials that actually 
fall into the sth category. The value of the test statistic is calculated using formula (5):

(5)

Chi-square distribution tables are used to assess the obtained result. In these tables, the 
rows correspond to the degrees of freedom v, and the columns correspond to probabilities p. 
If the table contains the number x in row v and column p, it means that the value of χ2 (obs) 
will be greater than x with the probability of p.

Runs Test. Let t = t1 t2 t3…tn be a binary sequence of length n and m be the length of a run. 
The number of occurrences  of all possible non-overlapping runs of length m (extra bits 
are discarded) is counted, and the statistic is computed as per formula (6):

(6)

Monotonicity Test. This test checks the uniformity of symbol distribution in a sequence by 
analyzing segments of non-increasing and non-decreasing elements. Let  be the 
number of segments of non-increasing (non-decreasing) length i. The statistic is calculated 
using formula (7):

(7)

where .

Intervals Test. This test aims to check the uniformity of symbol distribution in the examined 
sequence by analyzing the lengths of subsequences where all elements fall within a specific 
numerical interval. 

Let t = t1 t2 t3…tn be a sequence of k- bit numbers of length n. Let α and β be two integers 
satisfying the inequality 0 ≤ α < β ≤ 2k – 1. The length of intervals between numbers lying in 
the range [α; β] is computed. Then, the number of intervals  , is determined, and the 
statistic is calculated using formula (8):

(8)

where  is the total number of intervals, and the degrees of freedom equal m.
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Combinations Test. This test checks the distribution of symbols in the examined sequence by 
analyzing various combinations of numbers in the considered subsequences. Let t = t1 t2 t3…tn 
be a sequence of k-bit numbers of length n. We divide it into subsequences, each of which has 
a length m (additional bits are excluded). We count the number of subsequences  , 
containing i distinct numbers, and then compute the chi-squared statistic using formula (9):

(9)

where  are the Stirling numbers of the second kind.

Coupon Collector’s Test. In this test, the uniform distribution of symbols in the examined 
sequence is checked by analyzing various combinations of numbers in subsequences. Let t = t1 
t2 t3…tn be a sequence of k-bit numbers of length n. The number of subsequences vi of length 

, containing a complete set of numbers from 0 to 2k – 1 is calculated. Then the χ2 sta-
tistic is calculated using formula (10):

(10)

where , and the number of de-
grees of freedom is r – 2k + 1.

Permutations Test. In this test, the relative arrangement of numbers in subsequences is ana-
lyzed to check the uniform distribution of symbols in the examined sequence. 

The sequence is divided into subsequences, each of length k (additional bits are excluded). 
In each subsequence, there are k! possible permutations of relative arrangements of numbers. 
The number of occurrences of each permutation, , is counted, and the chi-squared 
statistic is calculated using formula (11):

(11)

Correlation Test. This test checks for the mutual independence of sequence elements. The 
statistic is calculated using formula (12):

(12)

For any j, the value Сj should lie within the interval:

where

Results and discussion

Development of a pseudorandom sequence generation algorithm
The algorithm for generating pseudorandom sequences (PRS) utilized in this work was 

previously developed in the Information Security Laboratory. The PRS generation algorithm 
consists of three stages.
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Stage 1. The initial parameters of the algorithm are as follows:
An initial numerical sequence X ={x1, x2,…, xn }, where xi ∈ Z256 ;
An irreducible polynomial p(x) of degree 8, used as a polynomial modulus;
The length of the generated sequence m ≥ 1.
The output is the sequence Z = {z1, z2,…, zm}, where zj ∈ Z256 .
The transformation of the initial numerical sequence is carried out according to the follow-

ing rules:

where  .
All generated  , are saved as elements of the generated sequence, since the first 

n elements are not counted as results. Thus, the sequence generation starts from the (n+1) 
th step. Here, the symbol ⊕ denotes the bitwise XOR operation and mod p(x) represents the 
remainder of the division of the resulting polynomial by the given irreducible polynomial p(x).

Stage 2. The input data (initial parameters) for this algorithm are as follows:
An initial numerical sequence X ={x1, x2,…, xn }, where xi ∈ Z256 ;
Irreducible polynomials p(x) and q(x) of degree 8, used as polynomial moduli, with p(x) ≠ q(x);
The length of the generated sequence m ≥ 1.
The output is the pseudorandom sequence Z = {z1, z2,…, zm}, where zi ∈ Z256 .
The transformation of the initial numerical sequence is carried out according to the follow-

ing rules:

where  .
Stage 3. The input data (initial parameters) for this algorithm are as follows:
An initial numerical sequence X ={x1, x2,…, xn }, where xi ∈ Z256 ;
Irreducible polynomials p(x) and q(x) of degree 8, used as polynomial moduli, with p(x) ≠ q(x);
The length of the generated sequence m ≥ 1.
The output is the pseudorandom sequence Z = {z1, z2,…, zm}, where zi ∈ Z256 .
As mentioned above, this algorithm is a combination of the two previous stages, meaning 

the generated sequences are combined using bitwise XOR (modulo 2). The resulting sequence 
is then stored as the final PRS (Figure 1).
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Figure 1. Schematic of the PRG_ISL Algorithm

Results of statistical evaluation of the PRG_ISL generator
One of the primary criteria for evaluating the security of a randomly generated sequence 

is the investigation of its statistical security. Statistical tests are empirical tests designed to 
assess the quality of PRNGs (Pseudorandom Number Generators), identify their weaknesses, 
calculate the statistical characteristics of the generated sequences, and compare these char-
acteristics with those of truly random sequences. When testing the randomness properties 
of a generated sequence, the sequence is considered statistically secure if it is proven to be 
generated in a random manner. In this work, we examine the statistical characteristics of the 
output sequence of the PRG_ISL generator using NIST and D. Knuth’s tests.

For the study of the statistical security of the PRNG using D. Knuth’s graphical tests, a bit 
sequence of 98 KB, generated by the PRG_ISL, was selected. The results of the study are shown 
in Figures 2 and 3.

Figure 2. Results of D. Knuth’s Graphical Tests: 
a) – Histogram of sequence elements distribution; 

b) – distribution on the plane; c) – runs test; d) – monotonicity check.
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Figure 3. Results of D. Knuth’s Graphical Tests: 
a) – Bitwise autocorrelation function; b) – Bytewise autocorrelation function; 

c) – Linear complexity profile; d) – Graphical spectral test.

For a thorough analysis of sequences generated by the PRG_ISL generator, we applied 
graphical tests developed by D. Knuth to 1000 files, each of which has a length of 10,000 
bytes, with initial parameters of 256 bits. The results of this study are presented in Table 1. 

Table 1. Results of Knuth’s graphical tests

№ Graphical Tests Number of files successfully passed 
testing

1 Histogram of sequence elements distribution 1000
2 Distribution on the plane 992
3 Runs Test 996
4 Monotonicity check 996
5 Bitwise autocorrelation function 997
6 Byte-wise autocorrelation function 996
7 Graphical spectral test 998
8 Linear complexity profile 1000

Unlike graphical tests, the interpretation of results in the case of estimation tests is deter-
mined as either ‘passed’ or ‘failed’ using specific numerical characteristics. To study the statis-
tical properties of the generated sequences using estimation tests, we analyzed 1000 files 
obtained from the PRG_ISL generator. The results are shown in Figure 4.
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Figure 4. Results of Knuth’s Evaluation Tests

According to the analysis of the number of files that did not pass the testing, significant 
deviations in the chi-square values were not detected.

Results of NIST Tests
Currently, the most widely used statistical tests are the NIST tests. The NIST tests consist of 

15 statistical tests: frequency (monobit) test, frequency test within a block, runs test, longest 
run of ones in a block test, binary matrix rank test, spectral test, non-overlapping template 
matching test, overlapping template matching test, Maurer’s universal statistical test, linear 
complexity test, approximate entropy test, serial test, cumulative sums test, and two different 
random excursions tests[18,19].

 The result of each NIST test is determined by detecting various deviations during the 
hypothesis testing of the randomness of the examined sequence. For example, let’s calcu-
late the P-value, which determines the probability of obtaining a random sequence from the 
examined sequence. If the research, depending on the obtained P-value, is conducted in the 
area α=0,01, then the following conclusion is drawn. If P ≥ 0,01, then the sequence generated 
from the PRG_ISL generator is 99% random, and if P < 0,01, then the sequence is 99% not 
random[20,21].

To investigate the statistical security of the output sequences of the PRG_ISL generator us-
ing the NIST tests, the same 1000 files were used as for the Knuth statistical tests. The results 
of the study are shown in Figure 5.



117

Figure 5. Results of NIST Tests

The results of the conducted tests show that all files passed the NIST testing successfully, 
as it was determined that the condition P ≥ 0,01 is satisfied for all test types. Thus, it can be 
concluded that according to the NIST tests, the PRG_ISL generator is 100% secure, as it fully 
satisfies the criteria of statistical security.

Conclusion
Pseudorandom sequence generators can be utilized for various purposes, including ad-

dressing critical data security tasks. Ensuring data protection requires a reliable verification of 
the proximity properties of output sequences from generators to truly random ones in terms of 
their statistical properties and unpredictability of output values. The pseudorandom sequence 
generator proposed in the article is used for creating secure keys in a post-quantum digital 
signature algorithm based on hash functions developed under a grant project.

The PRG algorithm consists of three steps. At each step, the generated pseudorandom se-
quence performs its function in accordance with the normal distribution law. Tests by D. Knuth 
and NIST were used to verify the statistical security of the proposed PRG. NIST tests are con-
sidered the most suitable in terms of efficiently assessing the properties of pseudorandom se-
quences and their usability across different platforms. The results of the conducted NIST tests 
showed positive outcomes, and the findings obtained from the graphical and evaluative tests 
by D. Knuth demonstrated that the requirements for pseudorandom sequences are fully met.

According to the research results, it was established that the proposed PRG algorithm can 
be safely used in the field of information security for generating reliable secret keys, pass-
words, and pseudorandom sequences of various lengths.
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