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SYNTHETIC DATA GENERATION FOR ANN MODELING 
OF THE HYDRODYNAMIC PROCESSES OF IN-SITU LEACHING

Abstract: The work presents an approach to enhance the forecasting capabilities of In-Si-
tu Leaching processes during both the production stage and early prognosis. ISL, a crucial 
method for resource extraction, demands rapid on-site forecasting to guide the deployment 
of new technological blocks. Traditional modeling techniques, though effective, are hindered 
by their computational demands and network throughput requirements, particularly when 
dealing with substantial datasets or remote computing needs. The integration of AI technol-
ogies, specifically neural networks, offers a promising opportunity for expedited calculations 
by leveraging the power of forward propagation through pretrained neural models. However, a 
critical challenge lies in transforming conventional numerical datasets into a format suitable 
for neural modeling. Furthermore, the scarcity of training data during the production phase, 
where vital parameters are concealed underground, poses an additional challenge in training 
AI models for In-Situ Leaching processes. This research addresses these challenges by pro-
posing a methodology for generating training data tailored to the most resource-intensive 
Computational Fluid Dynamics problems encountered during modeling. Traditional numerical 
modeling techniques are harnessed to construct training datasets comprising input and cor-
responding expected output data, with a particular focus on varying well network patterns. 
Subsequent efforts are directed at the conversion of the acquired data into a format compat-
ible with neural networks. The data is normalized to align with the data ranges stipulated by 
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the activation functions employed within the neural network architecture. This preprocessing 
step ensures that the neural model can effectively learn from the generated data, facilitat-
ing accurate forecasting of In-Situ Leaching processes. An advantage of proposed technique 
lies in provision of large, reliable datasets to train neural network to predict hydrodynamic 
properties based on technological regimes currently active or expected on ISL site. A major 
implication of this approach lies in applicability of pre-trained AI technologies to forecast 
future or determine current hydrodynamic regime in the stratum circumventing cost deter-
ministic simulations currently deployed at mining sites. Hence, innovative approach outlined 
in this paper holds promise for optimizing forecasting, allowing for quicker and more efficient 
decision-making in resource extraction operations while getting around the computational 
barriers associated with traditional methods.

Keywords: In-Situ Leaching modelling; neural networks; data preparation; data normaliza-
tion; computational fluid dynamics; synthetic data generation.

Introduction
The In-Situ Leaching (ISL) method, widely used in uranium mining in Kazakhstan, involves 

injecting a leaching solution (usually sulfuric acid) into the subterrain, which dissolves crys-
tallized minerals, thereby forming a productive solution that is brought to the surface for 
subsequent processing. The method allowed Kazakhstan to become a world leader in uranium 
production, accounting for as much as 40% of world share [1]. Among 15 mining sites active in 
Kazakhstan, ISL provides a safe, reliable and comparatively inexpensive way metal extraction. 
Major problem during mining operations arises due to the fact, that when a solution enters 
the subterrain, consequent processes are hidden below the surface, which hinders decision 
making process [2]. Therefore, simulating techniques as well as software packages have been 
under development to allow visualization, forecasting and decision making based on geolog-
ical, physical and chemical modeling [3, 4].

The ISL process itself is implemented by drilling a network of injection and production 
wells. The network configuration is determined by the geological and hydrological properties 
of the subsoil, and, usually, has a row or hexagonal pattern [4, 5]. In the first case, the rows of 
production and injection wells alternate; in the latter case, the injection wells form a cell in 
the form of a hexagon with a production well at the center. The cells are grouped into a tech-
nological block, which are part of the deposit as a whole. The injection and extraction of the 
solution into and out of the formation is carried out through filters located along the well [6].

The efficiency of production directly depends on the decisions made regarding the choice of 
drilling patterns (well location), filter positioning, well flow rates and other parameters that di-
rectly affect the hydrodynamics and chemistry of the leaching process [7]. These decisions are 
made depending on the specific geological and hydrogeological conditions in each block [8].

Decision making can be based on various techniques, as well as on the results of modeling 
the ISL process. Modeling of the ISL process consists of the following stages:

• geological modelling;
• hydrodynamic modelling;
• modeling of the kinetics of chemical processes of reacting components;
• economic assessment.
Geological modeling is the process of countering the ore body, determining the lithologi-

cal and filtration properties of the formation [9]. The process typically involves geostatistical 
calculations to interpolate values in the interwell space from known data obtained through 
geophysical surveys [6]. Hydrodynamic modeling is usually carried out by numerical calcula-
tion based on conservation laws and Darcy’s law, which describes the movement of fluids in 
porous medium [10]. Modeling the kinetics of chemical processes is usually based on the law 
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of mass action [10]. Economic assessment is carried out by determining the operating time of 
the unit, operating and capital costs [11].

The work [12] highlights the results of mathematical modeling to create a geological and 
technological model of uranium ISL, as well as the use of mathematical modeling to solve 
geotechnological and environmental problems. The paper [13] details the application of a 3D 
reactive transport approach using the Hytec code at an operational scale in Kazakhstan. Hytec 
technology uses computing clusters to solve mass transport problems, in particular to solve 
chemical equations for most geochemical reactions, including aqueous complexation, redox, 
dissolution/precipitation and sorption. The technology also has a hydrodynamic module that 
describes the filtration of solutions during ISL.

Mass transport modeling is computationally intensive for 3D problems [14]. The work 
[14] considers a classic approach to increasing computational performance by converting se-
quential computations on central processors into parallel computations on high-performance 
graphics processors. The non-stationarity of the hydrodynamic processes of the ISL leads to 
the need to carry out calculations with each change in production modes. On average, the 
operation of a process unit can last several years, while changes in hydrodynamic conditions 
can occur daily, and, in some cases, hourly. Hydrodynamic modeling involves calculating the 
pressure distribution in the reservoir, which is based on solving elliptic differential equations. 
Calculating such tasks for each block on medium-power machines can take up to two days, 
depending on: the operating time of the block, the dimensions of the computational grid, the 
frequency of changes in flow rates at wells, etc.

Acceleration of resource-intensive calculations can potentially be achieved through the use 
of neural network modeling. The effective use of neural networks to speed up modeling tasks 
has been demonstrated in solving biological problems [15].

The authors of this article suggest that a properly trained neural network model will sig-
nificantly speed up the process of hydrodynamic modeling during ISL. The neural network is 
trained on a set of input and output data, however, due to the complexity of the problem of 
calculating pressure fields, a significant amount of training data is required. However, there is 
no information available regarding the actual pressure distribution throughout the entire area 
under consideration during the production process. The collection of training data, neverthe-
less, can be achieved by generation done through deterministic traditional calculations based 
on conservation and Darcy laws.

The authors of the current work propose a technique for generating synthetic data to form 
the input layer of neural networks in order to simulate the process of uranium mining using 
the ISL method.

The paper discusses a background of application of machine learning approaches for simu-
lating physical processes in “Methods section”; an approach proposed by authors to generate 
training datasets in “Generation of synthetic data” section. The latter section discusses con-
ventional method of hydrodynamic simulation, which was used to generate training data, its 
processing, and splitting to input and output datasets for learning purposes.

Methods
Currently, machine learning (ML) methods are used in the field of mining, in particular in 

processes associated with drilling, blasting, logistics, processing and transportation of en-
riched metals, etc. [16]. In the mining industry, ML is used at various stages of operation, from 
exploration to final reclamation (Figure 1) [17]. 
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Figure 1. Share of published articles on the use of ML at various stages of field exploitation [17]

Increasing demand for raw materials, complex geological structures of ores and declin-
ing ore grades necessitate high-quality mineralogical analysis for efficient mining operations. 
Mineralogical data plays a critical role in estimating production duration and solving prob-
lems in ore exploration, mining and processing. Recent advances in mineral processing tech-
nology enable the use of sophisticated instrumentation and machine learning to increase 
the efficiency of design and operational workflows. Machine learning coupled with accurate 
data collection allows to diagnose and optimize various enterprise parameters in real time to 
improve recovery and energy efficiency. Integrating machine learning can: provide quantita-
tive assessments of relationships between process units, optimize entire process, and identify 
performance issues [Minerals].

Recent years have seen significant application of deep learning, a form of machine learning, 
in a number of areas. Unlike many other machine learning techniques, deep learning naturally 
takes advantage of automatic pattern discovery from data combined with modeling frame-
works [18].

The use of neural networks in modeling physical processes provides advantages such as 
their ability to capture complex nonlinear relationships, adaptability to different types of data, 
learning from production data, automatic feature extraction, and parallel processing capabili-
ties. However, a number of disadvantages include the requirement for a significant amount of 
training data, limited interpretability, limitations in extrapolation, and the complexity of the 
initial configuration [19].

The Physics-Informed Neural Networks (PINNs) approach has been widely used, which is a 
type of approximation of universal functions described by partial differential equations, and 
includes in the learning process knowledge of the physical laws governing a given dataset 
[20]. In particular, DeepXDE technology, developed by Lu’s group at the University of Pennsyl-
vania, is used to solve forward and inverse problems, as well as partial differential equations. 
Vivid examples are: solving the Poisson, Laplace, Heimholtz equations, etc. [21]. PINNs com-
bine data-driven deep learning techniques with the governing equations of a physical system 
to simultaneously fit data and enforce fundamental laws of physics. This is achieved by incor-
porating physics constraints into the loss function, allowing the neural network to optimize 
its weights and biases to minimize both fitting errors and violations of the underlying physics.

In neural networks, the input layer is the initial vector that receives and processes input 
data. It consists of neurons (also known as nodes or units), the number of which is equal to 
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the size of the input data. Each neuron in the input layer represents a function or attribute of 
the input data. For example, when solving problems on a computational grid, the values of 
the input layer can be the values at the grid nodes and/or boundary and/or initial conditions.

The main function of the input layer is to pass input data forward through the network by 
applying weights and biases to the input values and passing them on to subsequent layers, 
often called hidden layers. These hidden layers then perform calculations and transformations 
on this data to learn and extract relevant features, which ultimately results in network output, 
which may be classification, regression, or some other tasks depending on the architecture and 
purpose of the network.

The current work describes the process of generating input layer data and final data for 
network training. The input layer is formed by normalizing and vectorizing the initial pressure 
distribution in the reservoir, while the final data is calculated by traditional numerical mode-
ling. In other words, a set of synthetic data is generated to train a neural network to solve the 
problem of determining reservoir pressure at given well flow rates during uranium ISL.

Generation of synthetic data (3D domain state before and after)
A two-dimensional area of the ISL technological block is considered, with specified posi-

tions of production and injection wells (Figure 2).

Figure 2. The domain under consideration

The area and dimension of the grid are fixed. Each well has a corresponding flow rate in 
m3/day. Grid nodes corresponding to wells have hydraulic head values determined by the fol-
lowing equation:

(1)

where hwell is the hydraulic head at the injection or production well, qwell is the well flow rate, 
∆V is the volume of the well assembly, Kf is the rock filtration coefficient. In all other nodes, 
the pressure is zero.

At the moment, the neural network will be trained according to the positions of the wells; 
accordingly, the filtration characteristics were considered as homogeneous and isotropic.
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The Mass Conservation Law in the context of problems in continuum mechanics can be for-
mulated using a partial differential equation. The change in fluid density (denoted as ρ) with 
time (t), accompanied by flow ( ), is described by the following equation:

(2)

where, ρ is the fluid density, t is time,  is the Darcy filtration rate, and δ is the Dirac delta func-
tion.

It is assumed that all fluids in the rock, including groundwater and injected solutions, are 
considered incompressible, which means  . Therefore, the equation can be simplified to 
the following form:

(3)

Flow in a porous medium at low speeds is described by the Darcy’s Law:

(4)

where  is the Darcy filtration rate,  is the absolute flow velocity.
Substituting the equation (4) for (3), the following equation is obtained:

(5)

The equation (5) is an elliptic equation and is usually solved using iterative methods in 
continuum mechanics problems.

The solution of this second-order partial differential equation is carried out by semi-implic-
it upper and lower relaxation schemes. In this case, for even iteration steps, upper relaxation 
is applied, and for odd iteration steps, lower relaxation is applied:

(6)

for n=2k+1:

(7)

Thus, if we take into account that the final result was obtained in N iterations, for a specific 
well configuration, h0 is the data set for the input layer, hN.

Numerous data grids have been generated for the purposes of training the neural network. 
Positions of both injection and production wells were determined at random within the area 
of the computational domain. Hydraulic head values at the grid nodes where wells reside were 
set to 7 and -7 meters for production and injection wells respectively, which corresponds flow 
rates 5 and -5 m3/hour.
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Figure 3. Some examples of generated grids

The dimensions of the grid are fixed, and in current case were equal to 170x170 for the 
area equal to 170x170 meters, i.e., the are of each cell in the grid is equal to 1 m2. Boundary 
conditions were set to no-flow Neuman.

Let’s consider a neural network with the number of layers L. The layers have ni neurons, 
where  is the layer number. The number of neurons in the input and output layers of a 
single one: n1 = nL , and, in the context of the current task, will be equal to the number of nodes 
in the computational grid.
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Figure 4. Neural network configuration example

The model includes the weight values w between all neighboring layers, the bias values 
b and the activation function f . Thus, the activation of each neuron is calculated using the 
following formula:

(8)

Regression type problems in neural network modeling use specific activation functions that 
transform data in a certain range (usually from -1 to 1). For example, the hyperbolic tangent 
activation function is well suited for regression problems:

(9)

Data preparation is an important and critical step preceding the training process and has 
a significant impact on the efficiency and accuracy of the neural model. The main stages are: 
collecting and sampling data; integration of data from different sources and data processing. 
The last stage includes vectorization and data normalization [22].

In the current work, data collection is carried out based on the results of hydrodynamic 
modeling. Data sets h0 and hN are reduced to one-dimensional arrays Ll and Eo of the input 
layer and expected results, respectively.

According to the above, the process of training a neural network requires normalization of 
input data and arrays containing expected results to determine the loss function. There are 
a number of normalization algorithms for data processing: Min-Max Normalization, Decimal 
Scaling Normalization, Z-Score Normalization, Median Normalization, Sigmoid Normalization, 
and Tanh estimators (Figure 5). Min-Max Normalization scales data to a fixed range (usual-
ly between 0 and 1) by subtracting the minimum value and dividing by the range. Decimal 
Scaling Normalization shifts decimal points of data values to achieve normalization without 
altering the distribution. Z-Score Normalization rescales data to have a mean of 0 and a stan-
dard deviation of 1 by subtracting the mean and dividing by the standard deviation. Median 
Normalization adjusts data based on the median value, dividing each value by the median to 
center the distribution around 1. Sigmoid Normalization applies a sigmoid function to squash 
data between 0 and 1, often used in logistic regression to handle outliers. Tanh Normalization 
applies the hyperbolic tangent function to map data to the range [-1, 1], useful for handling 
data with negative values.
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Figure 5. MSE errors when using various data normalization methods [23]

For the current task, when using an activation function that produces values in the range 
[-1; 1], where -1 will correspond to the minimum flow rate at the wells, and 1 to the maxi-
mum, taking into account the study of the effectiveness of various normalization methods in 
neural network modeling conducted in [23], it is reasonable to use the Min-Max algorithm to 
normalize hydrodynamic data. The reason behind choosing Min-Max algorithm is to scale their 
data to a fixed range between -1 and 1 and maintain the relative relationships between the 
original data points. This is to be able to reconvert data obtained through AI prediction to an 
original format.

Using Min-Max normalization, the input layer data is prepared using the following formula:

(10)

for each x value from the Ll array, where high = 1 and low = -1.

Figure 6. Schematic representation of data preparation for neural network

Model is to be trained on a fixed grid size, although the assumption is that grids of differ-
ent dimensions will be resized to fit the node amount of input and output layers. This can be 
achieved through ordinary interpolation.
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Eventual efficiency advantage of pre-trained neural network over conventional method can 
be estimated through Big-O notation of computational complexity. 

Conclusion
Current modelling techniques provide a set of tools to determine the dynamics of the ISL 

process during production stage as well as during early prognosis. The continuous develop-
ment of the deposit, requires a quick forecast capability on site, before launching new techno-
logical blocks. Traditional methods, however, are computationally expensive and might require 
introduction of cluster computing, which will be impossible to implement for every deposit or 
would require high throughput of the network in case of remote computing, due to large size 
of datasets.

An introduction of AI technologies such as neural networks might significantly decrease 
calculation times via forward propagation through a trained neural model. However, steps 
are required to convert a traditional numerical method dataset into the form appropriate for 
neural modelling.

An absence of training data available during production with necessary parameters being 
hidden underground, leads to a challenge of training an AI model.

In current work, a technique for generating training data for the most resource intensive 
CFD problems arising during ISL modeling has been proposed. Traditional numerical model-
ling has been used to generate training datasets with input and expected outputs. In this case, 
specifically for varying well network patterns.

Further work has been conducted to convert obtained data into a structure suitable for 
neural network. The data has been further normalized to correspond to data ranges imposed 
by the activation functions used in the network.

Neural networks, once trained, can dramatically cut computation times through forward 
propagation. In other words, calculation would only go forward through a configured network 
once. In contrast, when using conventional methods, this would require solving an elliptical 
equation iteratively for each time the hydrodynamic regimes change, which occurs daily over 
several ears of a technological block operation.

Next step of current scientific research would be to train the network and to obtain predic-
tions with sufficient accuracy.
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