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PERFORMANCE COMPARISON OF NEURAL NETWORKS IN 
GRAVITATIONAL LENSING DETECTION

Abstract.  A gravitational lens is a distribution of matter, such as dark matter halos, galaxies, 
or quasars, between a distant light source and an observer that can bend the light from the 
source as the light travels toward the observer. Nowadays, it is slightly complicated to identify 
gravitational lenses without powerful computing devices and groups of scientists working 
together. In addition, future surveys will have orders of magnitude more data and more lenses 
to find. With up-to-date algorithms such as neural networks, detecting and classifying them for 
a single human being will be possible. The neural networks described in this paper make the 
first steps in that direction. The primary purpose of this work was to develop three different 
neural networks and determine which one could detect gravitational lensing more quickly and 
precisely. For training, testing, and validation we used a dataset of 2000 images. Half of these 
images were downloaded from Bologna Lens Factory, a database of simulated gravitational 
lenses based on galaxies lensed by galaxies (i.e., no clusters and no quasars). We simulated the 
second half of the images using Python-based code to simulate mock strong lensed galaxies. 
We used Python-based code to mock strong lensing with different source parameters. Next, 
we built three types of artificial neural networks and compared their efficiency. Firstly, we 
developed a fully convolutional neural network (CNN) and a fully connected neural network 
(FCNN). The third neural network was a combination of these two approaches. In this algorithm, 
the FCNN layer replaced the last layer of CNN. Next, we compared the learning rates of these 
algorithms and applied all neural networks to validation images. As a result of the study, 
we determined which of the developed neural networks fit better for searching gravitational 
lenses. 

Keywords: cosmology, gravitational field, Dark Matter, gravitational lensing, machine 
learning, image classification, fully connected neural networks, convolutional neural networks

Introduction
Gravitational lensing occurs when the gravity of a massive object causes the deflection of 

electromagnetic radiation from a distant object. This phenomenon can be seen as a distortion 
in the light from a faraway galaxy, caused by the gravitational pull of a black hole or galaxy 
cluster, similar to the way a traditional lens works (as shown in Figure 1).



6 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 13, MARCH 2023

Figure 1. Gravitational lensing

Gravitational lensing now serves as a powerful astrophysical tool to test GR, study distant 
objects, the distribution of dark matter and the large-scale structure of the universe, relic 
radiation and even the discovery of planets [1]. One of the new directions in gravitational 
lensing research is considering plasmas [2]. When calculating and analyzing the effects of 
gravitational lensing, it is usually assumed that light propagates in a vacuum. However, the 
cosmic medium is filled with interstellar gas, which is in an ionized state, i.e., actual light 
rays from the source to the observer propagate through plasma. In its presence, the beams’ 
deflection angles differ from a vacuum’s case.

Until now, the most widely used method of searching for lenses in image reviews has 
been the visual inspection of candidates selected by luminosity and color. However, working 
with such large amounts of data would only be practical for a visual inspection approach in 
the future. In addition, human inspection methods’ effectiveness and detection of error are 
challenging to quantify rigorously. Consequently, automatic ways of analyzing data will be 
crucial for the study of dark matter substructures in the future. Machine learning, particularly 
deep learning, would be ideal for this task. Currently, convolutional neural networks (CNN), fully 
connected neural networks (FCNN) or a combination of these two methods can be considered 
the primary candidates for completing this task. We built all these neural works in our work 
and chose the most effective one.

Literature Review
The solar eclipse of May 29, 1919 provided the first evidence to support the general theory 

of relativity, and it also marked the first observed occurrence of gravitational lensing. During 
this eclipse, the sun’s gravitational field caused the starlight to bend slightly [3]. However, 
under optimal conditions, a lens with a sufficiently high mass density can greatly magnify 
both an image and its background source. This is known as strong lensing. To understand this 
phenomenon, we need to consider how light travels from the true source to the observed 
image. Unlike traditional optics, where there is a single focal point, strong lensing occurs along 
critical lines, which can magnify the image to infinity. When these critical lines are projected 
onto the source plane, they form caustics, which depend on the distribution of matter in the 
lens and the distance between the source and the lens. The location of the background source 
with respect to these caustics determines the magnification and position of the resulting 
images [4].

The strong gravitational lensing of galaxies provides valuable information for both 
astrophysics and cosmology. To date, we have detected several hundred strong lenses between 
galaxies through diverse searches in photometric and spectroscopic surveys [5]. This sample 
has been used to learn about the masses and density profiles of galaxies, the population 
of dark subgalaxies, cosmological parameters, the high-redshift luminosity function [6], and 
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the characteristics of high-redshift sources [7]. However, the limited number of strong lenses 
available for analysis is a significant constraint for many of these studies.

Current and future surveys of the wide and deep sky offer improved depth, area, and 
resolution over existing data and could result in a considerable increase in the number of 
known strong lenses on galactic scales [8]. A larger sample of strong lenses could also allow 
for the exploration of smaller lens masses, higher magnitudes, and fainter sources. As a result, 
it would be possible to investigate trends in the luminosity and redshift properties of lenses 
and sources. By examining galaxy mass-to-light ratios, dark matter distribution in galaxies, 
and the population of dark substructures, we could gain tighter constraints on the nature 
of dark matter, the initial mass function, and the physics of galaxy formation than what is 
currently possible [9].

In the past, strong gravitational lenses have been discovered by chance during the human 
analysis of data. However, a systematic search by experts would be too time-consuming for 
future large-scale research, unless citizen scientists get involved. For instance, the Euclid 
mission [10] and the Large Synoptic Survey Telescope are expected to uncover over 105 strong 
lenses among 109 objects. Similarly, the SKA survey is expected to detect a similar number of 
strong lenses. Therefore, there is a pressing need to develop efficient automated methods for 
discovering gravitational lenses [11]. Machine learning appears to be the only viable option to 
human visual inspection for this task. Several groundbreaking works have already demonstrated 
that ML techniques can effectively find strong lenses in some of the most successful current sky 
surveys. In fact, the Strong Gravitational Lens Finding Challenge competition compared several 
lens-finding methods, showing that ML methods perform just as well as human inspection 
or other traditional methods but with much faster classification rates [12]. As a result, ML 
methods have found thousands of new lens candidates, quickly catching up with the total 
number of gravitational lenses discovered by traditional methods over decades. Deep neural 
networks excel at image recognition, making them ideal for this task.

Neural networks, which are computational systems inspired by the structure of the human 
brain, are designed to recognize patterns. They consist of three layers: an input layer, a hidden 
layer, and an output layer. These layers consist of interconnected nodes (artificial neurons) that 
perform calculations. The first neural network method [13] was trained to identify luminous 
red galaxy lenses with Einstein radii ≥1.4 arcsec and was applied specifically to the kilo-degree 
survey [14] for redshifts of lensing galaxies z ≤ 0.4. Another paper [15] published shortly after 
described the use of deep residual networks (a newer version of CNN) called CMU DeepLens 
to find strong galactic lenses. The researchers discovered that their method was easier to train 
and provided accurate results when tested on 20,000 simulated LSST-like images. However, 
they observed that their method did not show a significant improvement over the method 
used in previous research despite being more complex, owing to limitations in their modeling. 

In a study by Jacobs et al. (2017) [16], four different convolutional neural networks (CNNs) 
were trained using two different methods, and all networks achieved over 90% accuracy 
in detecting targets. Several CNNs were tested by another group [17] and found that even 
simple architectures could achieve high accuracy in their results, indicating that complexity 
was not always necessary for good performance. However, both studies acknowledged that 
their accuracy may be limited by the simplicity of their models. CNNs have also been used 
to analyze images and accurately estimate lensing parameters much faster than previous 
methods. Hezaveh et al. (2017) [18] created a network capable of achieving parameters ten 
million times faster, although it is currently limited to a certain density profile. Despite this 
limitation, CNNs have demonstrated the ability to significantly reduce the time needed to 
complete such tasks without introducing significant uncertainty, as shown in Levasseur et al. 
(2017) [19].
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Since then, there have been several other scientific works that have applied ML methods to 
detect gravitational lensing in astronomical images, including Davies et al. (2019) [20] and 
Wilde J. et al. (2022) [21] research studies. These studies have improved gravitational lens 
detection using CNNs by using larger and more diverse datasets, more advanced architectures 
and techniques, and new approaches for combining CNNs with other image analysis techniques. 
Neural networks can be considered a powerful tool for detecting and analyzing gravitational 
lenses in astronomical images and may help to improve our understanding of the distribution 
and properties of dark matter in the universe.

Purpose and Objectives of Research
The aim of the research is to select the most effective neural network among commonly used 

deep learning methods for detecting gravitational lensing. To achieve this goal, the following 
tasks should be solved in the paper: select and prepare the proper dataset of gravitational 
lenses; build three different types of artificial neural networks for detecting gravitational 
lensing; choose optimal batch size, a number of epochs, optimizer and criterion functions; 
compare all neural networks’ loss graphs and apply them to validation images; based on 
their learning rate, total loss function and accuracy, select the most fitting one. We also aim 
to identify effective features and parameters for each neural network architecture, and to 
compare the generalizability of the different models to new datasets. In addition, we plan 
to investigate the interpretability of the neural network models and identify the sources of 
errors and limitations of each architecture. This will provide a comprehensive understanding 
of the strengths and weaknesses of different neural network models in gravitational lensing 
detection, and can guide the development of more effective models for future research.

Datasets and Algorithms Description
We used simulated gravitational lens images to train our neural networks, which were 

obtained from the Bologna Lens Factory. These images were created based on the Millennium 
project [22], a cosmological N-body simulation that generated a catalogue of dark matter 
halos and galaxies within a light cone. This catalogue is publicly available and widely used 
by researchers to study various aspects of the universe, including the evolution of the galaxy 
luminosity function, clustering of galaxies, and formation of massive galaxy clusters [23]. Our 
dataset was based on a 1.6 sq.deg. light cone extending out to redshift z = 6, and the halos in 
the catalogue were characterized by their total mass, size, and half-mass radius. The catalogue 
also included subhalos of larger halos, and the halos were populated with galaxies based on 
their merger history using the semi-analytic model (SAM). To generate the lensing images, 
the halo catalogue was read into the GLAMER lensing code [24], which performed all the 
necessary ray tracing. Within this code, a Navarro, Frenk & White (NFW) profile was fit to 
the three parameters mentioned above to represent the dark matter component of the lens. 
Examples of gravitational lenses from the Bologna Lens Factory can be seen in Figure 2.
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Figure 2. Examples of gravitational lenses from the Bologna Lens factory

The second half of the images were simulated by using Python-based code to simulate mock 
strong lensed galaxies. Initially, a two-dimensional Sersic profile was set. caustic curve. We 
began by examining the singular isothermal ellipsoidal lens, where the ellipticity falls within 
the range of 0 ≤ ϵ < 1/5. The ellipticity value must satisfy the condition that the surface mass 
density projected onto the lens plane is non-negative throughout. This condition restricts the 
ellipticity value to be less than 1. Additionally, the density contours must be convex, which is 
reasonable for an isolated relaxed system, further constraining the ellipticity value to be less 
than 1/5. The lens equation is expressed as:

 
(1)

 
(2)

where  and  denote the positions of the source and images, 
respectively. For simplicity, we introduce variables as  ,  
and  , so that the lens equation can be rewritten as:

 (3)

(4)

Here, we consider off-axis sources  . In this case, Eqs. (3) and (4) show 
 . Eliminating  from Eqs. (3) and (4), we obtain as:

(5)

The inner and outer caustics are given by:

(6)

And the inner caustic given by Eq. (6) is parameterized as:

(7)

(8)

DOI 10.37943/13PQRV7503
© Dinara Kaibassova, Asset Kabdiyev



10 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 13, MARCH 2023

where  . Then, the caustic curve was plotted on the source plane (in red) along 
with random source coordinates (in green) using randomly set parameters (Figure 3). 

Figure 3. Caustic on the source plane and random source coordinates (green).

The lens potential is modified by adding a simulated Gaussian random field (GRF) potential 
that follows a power-law power spectrum given by:

(9)

The amplitude  in the power law is determined using Parseval’s theorem, which relates 
the variance of the GRF potential fluctuations inside the image, denoted by  , to the 
normalization factor:

(10)

To calculate the sum, we consider all possible values of k, which is the magnitude of the 
wave vector in Fourier space and is calculated as the square root of the sum of squares of kx 
and ky . In our simulations, we use a Fourier grid of size 121x121. In this case, a DFT of one 
random realization of the above power spectrum leads to a GRF potential field with a variance 
of  . Using these parameters, we can generate a random realization of the GRF potential 
field. We plot an example of the GRF potential field created by randomly chosen parameters 
in Figure 4.

Figure 4. Gaussian random field
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After setting proper lens plane parameters, Sersic source parameters and parameters for 
the blob sub-structures in the source, we were ready to simulate gravitational lenses and their 
sources (Figure 5).

Figure 5. Example of a simulated gravitational lens and their source

We used Python programming language and worked in the Google Colab environment to 
solve the following problems. First, to start processing the lensing images we will be using 
to train our CNN, we downloaded all datasets in special astronomical image format. The 
total size of the dataset was 2000 images. The training set had 1050 images, and one lens 
and not lens images were used for validation Fig. 6. In the beginning, we started to make 
our neural networks by importing the necessary libraries: PIL, Random, Glob etc. In addition 
to Matplotlib and Numpy, we used Pytorch for all the deep-learning calculations. We then 
imported Torchvision, which contains a lot of popular data sets and models that are useful 
for measuring the performance of our custom model against the previous state of the art. All 
data should be correctly prepared before we would start to train it. It was transformed into 
tensors, and then we defined a class that helped us divide data and select it randomly. The 
data were divided into batches; the batch size was 32 units. To measure total error and loss 
we used a criterion that measures the Binary Cross Entropy between the target and the input 
probabilities (BCELoss). The unreduced loss can be described as:

(11)

(12)

Accuracy score measured the number of correct predictions made by a model in relation to 
the total number of predictions made.

Figure 6. Validation images
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Fully Convolutional Neural Network 
After preparing the data, we constructed fully CNN by using Conv2D convolution layers. 

We had three channels but were free to change this for other types of images, and our image 
sizes were 64 by 64. After adding the first convolutional layer, we started with the number 
of channels coming in and then put the number of channels or the number of layers that we 
want out. The number of feature maps had a kernel size of 4, strides of 2 and padding of 1. We 
wanted to end up with a number of feature maps of size 128 by 128. Then we applied batch 
normalization and ReLU to our feature maps. In the next convolutional layer, we multiplied 
the output by two for deeper throughout the network, and all other parameters remained the 
same. The process was iterated 5 times until getting a 1x1x1 tensor layer with an output of 
numbers ranging from 0 to 1. We chose 30 training epochs, Adam as Optimizer and BCELoss 
as a criterion and used CUDA as a parallel computing platform. Then, all data were divided 
into mini-batches. Finally, our neural networks were trained by iterating through these mini-
batches in the training set and mini-batches in the testing set. Training started with a very 
high loss at the beginning, and it’s quickly gone down to even less than 0.1 error (Figure 7). 
Table 1 shows the accuracy of validation images, total error and total accuracy of the testing 
dataset.

Table 1. Fully CNN’s accuracy and error rate

Testing dataset Gravitational lens image Not gravitational lens image
Accuracy 97.9% 98.7% 99.3%
Error 0.0102 0.0032 0.0011

Fully Connected Neural Network
To summarize, fully connected neural networks are neural networks where all neurons in 

one layer are connected to neurons in the next layer. While not commonly used for image 
classification, they have the advantage of being structure agnostic. In this study, the model 
started with a linear regression layer of size 642x642, with the output normalized by one-
dimensional batch normalization and applied the ReLU activation function. The model consisted 
of 7 linear regression layers, with the last layer squeezed to 192x1 for final classification 
using the Sigmoid function. The final train and test loss values were greater than 1 and 2, 
respectively, as shown in Figure 8. The validation images were difficult for the network to 
classify, as shown in Table 2, but the overall accuracy was more than 80%.

Table 2. FCCN’s accuracy and error rate

Testing dataset Gravitational lens image Not gravitational lens image
Accuracy 82.5% 55.7% 47.2%
Error 0.394 0.712 0.871

Fully Connected Layer in CNN
Fully connected layers are utilized to allow for more connectivity possibilities and enable 

updating weights during back-propagation. These layers connect every neuron in one layer to 
every neuron in the following layer. Our algorithm follows the CNN process, but we modified 
the last hidden layer from a Conv2D layer to a fully connected output layer, combining an 
Affine and Non-Linear functions. The flattened layer, which is a one-dimensional layer, provides 
input data to the fully connected layer. The data from the Flatten layer is first passed through 
the affine function and then through the non-linear function, which together form one fully 
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connected or flattened layer. The output from the final hidden layer is fed into the Sigmoid 
function to create a probability distribution over the set of classes. The final training loss 
value is close to 0.5, while the test loss value is 0.3 (Figure 9). Table 3 shows the accuracy of 
validation images, total error, and total accuracy of the testing dataset.

Table 3 CNN with fully connected layer’s accuracy and error rate

Testing dataset Gravitational lens image Not gravitational lens image
Accuracy 97.2% 96.8% 99.1%
Error 0.0825 0.0132 0.0076

Figure 7. CNN’s loss graphs Figure 8. FCNN’s loss graphs

Figure 9. CFCNN’s loss graphs Figure 10. Mean loss graphs

Discussion of Results
All developed deep-learning algorithms have shown the ability to detect gravitational 

lensing, but not all of them were equally efficient. The least effective compared to other 
neural networks was a fully connected neural network. This type of network is a good enough 
classifier, but they aren’t good for feature extraction. Before the emergence of CNNs, people 
usually used FCNN, and the state-of-the-art was to extract explicit features from images and 
then classify these features. Nowadays, data scientists rarely use this algorithm for image 
classification; the resulting accuracy and total loss function explain why. More interesting 
was the comparison of a fully CNN and a CNN with a fully connected layer. Although the 
CNN with the fully connected layer showed markedly low losses and very high accuracy, the 
fully connected CNN had a much higher learning rate and slightly better other results. Both 
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algorithms can successfully detect gravitational lensing images, but fully CNN can do it much 
faster. The mean loss functions of all three neural networks are shown in Figure 10. 

Conclusions
In this scientific paper, we successfully developed and compared three commonly used 

deep learning algorithms for gravitational lensing detection. Despite the fact that FCNN failed 
to recognize validation images and had low overall performance, two other neural networks 
showed the ability to classify gravitational lensing images. In the future, both fully CNN and 
CNN with the fully connected last layer can be used to find new galaxies or dark matter halos 
by inspecting potential gravitational lensing images. Of the two, fully CNN is the preferred 
algorithm because of the faster learning process and less loss. Consequently, this model 
requires fewer input data to train. Only this model showed no signs of overfitting due to the 
minimal difference between the training and testing loss values. Other neural networks have 
problems with generalization because we didn’t use a very large dataset, and this is something 
you might have to deal with if your dataset is limited, like the one we used in our paper. 

Based on results, developed fully CNN can be a powerful tool for identifying new gravitational 
lens candidates, which in turn can lead to the discovery of new galaxies and structures, providing 
valuable insights into the distribution of matter in the universe, the properties of dark matter, 
and the nature of dark energy. In future works, we plan to use extended datasets with different 
types of lenses, try other types of neural networks, and compare their results again.
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