
24 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 13, MARCH 2023

Altybay Arshyn
PhD, Senior Lecturer
arshyn.altybay@gmail.com, orcid.org/0000-0003-4939-8876
Al-Farabi Kazakh National University, Institute of mathematics and
mathematical modeling, Almaty, Kazakhstan

Mekebayev Nurbapa
PhD, associate professor
Mekebaev.nurbapa@qyzpu.edu.kz, orcid.org/0000-0002-9117-4369
Kazakh national women’s teacher training university, Almaty, Kazakhstan

Darkenbayev Dauren
PhD, Department of Computer Science
orcid.org/0000-0002-6491-8043
Faculty of Information Technologies,
Al-Farabi Kazakh National University, Almaty, Kazakhstan

DOI: 10.37943/13SCQO3041

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY license

A GPU IMPLEMENTATION OF THE TSUNAMI EQUATION

Abstract. In this paper, we consider numerical simulation and GPU (graphics processing
unit) computing for the two-dimensional non-linear tsunami equation, which is a fundamental
equation of tsunami propagation in shallow water areas. Tsunamis are highly destructive natural
disasters that have a significant impact on coastal regions. These events are typically caused
by undersea earthquakes, volcanic eruptions, landslides, and possibly an asteroid impact. To
solve numerically, firstly we discretized these equations in a rectangular domain and then
transformed the partial differential equations into semi-implicit finite difference schemes.
The spatial and time derivatives are approximated by using the second-order centered
differences following the Crank-Nicolson method and the calculation method is based on
the Jacobi method; the computation is performed using the C++ programming language; and
the visualization of numerical results is performed by Matlab 2021. The initial condition was
given as a Gaussian, and the basin profile has been approximated by a hyperbolic tangent.

To accelerate the sequential algorithm, a parallel computation algorithm is developed using
CUDA (Compute Unified Device Architecture) technology. CUDA technology has long been
used for the numerical solution of partial differential equations (PDEs). It uses the parallel
computing capabilities of graphics processing units (GPUs) to speed up the PDE solution. By
taking advantage of the GPU’s massive parallelism, CUDA technology can significantly speed
up PDE computations, making it an effective tool for scientific computing in a variety of fields.
The performance of the parallel implementation is tested by comparing the computation
time between the sequential (CPU) solver and CUDA implementations for various mesh sizes.
The comparison shows that our parallel implementation gives significant acceleration in the
implementation of CUDA.

Keywords: Tsunami equation, finite difference scheme, numerical methods, parallel
algorithm, CUDA.

Introduction
Since tsunami modelling is carried out over a very large area and a long period of time, it

requires a large computational effort in the background of calculations. Therefore, in this case,
it will be very important to use parallel calculations.

25DOI: 10.37943/13SCQO3041
© Altybay Arshyn, Mekebayev Nurbapa,
 Darkenbayev Dauren

The introduction of the CUDA programming language in 2006 has made GPU programming
on NVIDIA graphics cards easier. CUDA has a C-like syntax, which makes it easy to learn. GPUs
are powerful processors that are highly parallel, multi-threaded, and multi-core. They have low
cost, high bandwidth floating-point operations, and memory access bandwidth, which make
them appealing to high-performance computing researchers [1]. Compared to cluster systems,
GPUs are inexpensive and consume less power with equivalent performance. Scientists and
researchers can increase their productivity by several orders of magnitude using graphics
processors in many fields of science and technology. For instance, in work [2], the authors
first time efficiently implemented on the CUDA platform sparse matrix-vector multiplication,
and they proved that scientific computing in the CUDA environment performs very well. In [3],
the authors implemented the most complex scientific simulation on GPUs at that time when
they implemented fluid simulation on GPUs. In this study, we examine a GPU implementation
for applications to tsunami modelling in the coastal area. Accordingly, we develop a parallel
algorithm for solving numerically nonlinear tsunami equations by using the CUDA technology.
In the parallel implementation of the numerical solution to the tsunami and shallow water
equations, many researchers proposed their algorithms using various methods. Here, we will
mention a few of them. In the pioneering work [4], Gidra et al. considered the parallelization
of the tsunami equation based on the TUNAMI-N1 model. They proposed two parallel
models (data-parallel and hybrid) to speed up TUNAMI-N1 and obtained good results, but
the structure of the kernel functions was unclear. One of the wildly used systems describing
tsunami propagation is proposed by Imamura et al. in [19]. Indeed, the described system in this
manual book is a modification of the shallow water equation. That is why many researchers
use shallow water equation for tsunami waves in the coastal zone. There are a lot of numerical
methods developed to solve the shallow water or tsunami propagation equations. Most of the
conventional tsunami models are based on finite difference leap-frog schemes, in paper [5],
the authors, for the first time using finite difference leap-frog schemes, did tsunami simulation;
in [6], the authors used the finite difference leap-frog schemes for the shallow-water-wave
equations in the calculation of the evolution of breaking and nonbreaking waves on sloping
beaches. The authors in work [7] performed numerical simulations of the 2004 Sumatra
earthquake fault plane mechanisms and the Indian Ocean tsunami by utilizing a modified
shallow water equation and a leap-frog scheme. Besides the finite-difference method, the
finite volume method has become very popular for the numerical solution of the shallow
water equation. Therefore, many parallelization approaches on GPU are based on the finite
volume method; for instance, in [8], the authors proposed a hydrodynamic model based on
GPU parallel computing that has been presented for tsunami simulations. In work [9], the
authors presented a parallel CUDA implementation of 2D Shallow Water Equations based
on the staggered grid. But here unclear parallelization process. In [10] proposed a single
GPU and a multi-GPU implementation of Savage–Hutter type model using MPI and the CUDA
framework over structured meshes. Parallelization of the two-layer shallow water system on
GPU was proposed in [11]. Khrapov at. al. [12] proposed a parallel implementation by using
OpenMP-CUDA technologies for self-consistent simulations of surface water and sediment
dynamics; in this implementation they used several GPUs. In [13] presented the application
of GPU-accelerated finite volume methods for simulating three-dimensional shallow water
flows. Asuncion et al. [14] demonstrate the use of GPU-accelerated AMR-based application
for modeling tsunamis caused by landslides through a two-layer shallow water system.
Satria et al. [15] proposed the GPU Acceleration of the Tsunami Propagation Model, which is
based on the two-step finite-difference MacCormack scheme. Kohei et al. [16] present high-
performance and power-efficient computation of MOST for practical tsunami simulation with
FPGA. Parent’s work [17] presents a GPU implementation for the real-time solution of shallow

26 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 13, MARCH 2023

water equations. Their approach is also based on a finite difference scheme. Zhai et al. [18]
propose parallel numerical implementation of two-phase shallow granular ow equations on
multiple GPUs. In this work, we propose a CUDA implementation to simulate tsunami wave
propagation in the coastal area.

Governing equation and Finite difference schemes
In [19] fundamental equations of the tsunami propagation in shallow water are given in

the following form

(1)

(2)

(3)

where is water surface elevation, h is the depth of the water, the total
water depth, M and N are discharge fluxes in the x and y directions, is the gravitational
constant, n is a coefficient of bottom friction. In what follows, we will suppose that the tsunami
propagation area is sufficiently large such that assuming the Dirichlet boundary condition on
its boundary is natural.

Finite difference schemes. We rely on a rectangular time-space grid. The time discretization
is and the spatial grid is . The particle velocity vector field and the
discharge flux are dened at integer spatial and time nodes: Let

Where Lx and Ly are the length of the domain in the x and y directions, T is the total
time, , the grid size, , respectively, the spatial and time step. For simplicity, we
put and denote . We used finite difference method to approximate
2D Tsunami. The spatial derivatives were approximated by using the second-order centered
differences. The time derivatives were approximated by using the second-order centered
differences following the Crank-Nicolson method. The equation (1), therefore, can be
approximated by

(4)

(5)

(6)

for

27

(7)

 and with boundary conditions

(8)

for and , respectively.

GPU Implementation
CUDA (Compute Unified Device Architecture) was developed to enable multi-core

parallelization on NVIDIA’s GPUs. It includes a software model and a set of compilation tools
that support Many-Core GPUs. A CUDA program consists of two parts: a sequential program
that runs on the CPU and a parallel part that runs on the GPU. The parallel part is called the
kernel, and a C program with CUDA extensions distributes multiple copies of the kernel to
available multiprocessors for concurrent execution. The CUDA code has three computational
stages: transferring data to global GPU memory, running the CUDA core, and transferring
results from the GPU to CPU memory. Due to the CFL condition and the need to capture all
topographic details, implementing the method efficiently is critical. While most processors
have multithreading capabilities, it is not straightforward to use all cores. To make the iterative
process parallelizable, it can be divided into different sub-processes that can be processed
concurrently by different units, provided the loop contains straight-line code and has no data
dependency between iterations. If the data flow does not satisfy these conditions, the method
for processing elements to make them parallelizable must be restructured. In this work, we
used the latest NVIDIA computing architecture, including the Turing TU102 architecture and
NVIDIA GeForce RTX 2080Ti with 11 GB of GDDR6 memory.

Fig. 1 shows the general steps of the parallel algorithm, here, we calculate M, N, η on the
graphics processor. In this study, we use 3 kernel functions such as M, N, η, and M, N, η kernel
functions are performed independently of each other, after getting M, N then synchronization
is performed. Then η is calculated by the obtained results of M, N.

Figure 1. General steps of the parallel algorithm implemented in CUDA

CUDA implementation. In 2007, NVIDIA introduced CUDA, an extension to C programming
language, for general purpose computing on graphics processors. The design of the algorithm

DOI: 10.37943/13SCQO3041
© Altybay Arshyn, Mekebayev Nurbapa,
 Darkenbayev Dauren

28 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 13, MARCH 2023

enables a straightforward way of expressing parallelism in terms of data level. The steps
involved in solving equations (4)-(6) are outlined in Algorithm 1.

Experiment
This section presents the outcomes achieved on a desktop computer with a configuration of

4352 cores GeForce RTX 2080 TI, NVIDIA GPU, and an Intel Core(TM) i7-9800X CPU running
at 3.80 GHz, with 64 GB RAM. The simulation parameters are set as follows. Mesh size is
uniform in both directions with , and numerical time step is 0.05 s, and
simulation time is T = 5.0 s, therefore the total number of time steps is 100. To provide more
accurate information, we conducted experiments on five scenarios with varying domain sizes:
200×200, 500×500, 1000×1000, 2000×2000, and 4000×4000.

In the following, we demonstrate numerical simulations. All calculations and
visualization are done in Matlab by using the simple iterative method. For all simulations

 . For the simulations, we use initial conditions

and Dirichlet boundary conditions. The sea basin is modeled in the form of the hyperbolic
tangent. The depth prole is given as

The result of the numerical simulation is illustrated in Fig. 2.

29

Figure 2. Displacement of the wave at different times (t = 0; t = 0.5; t = 1.0; t = 2.0).

Table 1 shows the CPU time and GPU time in seconds for solving the problem (1)-(4) using
serial and CUDA methods. The speedup of the process can be seen in Fig. 3.

Table 1. Execution time and speedup with the Intel Core(TM) i7-9800X, 3.80 GHz,
NVIDIA RTX 2080 TI

Domain size CPU time GPU time
200 × 200 1.128 0.52
500 × 500 6.883 2.47

1000 × 1000 27.324 9.5
2000 × 2000 107.21 23.62
4000 × 4000 434.502 79.66

Table 1 shows that the execution time in the GPU is significantly faster than the CPU, noting
the domain size.

Figure 3. Speedup

DOI: 10.37943/13SCQO3041
© Altybay Arshyn, Mekebayev Nurbapa,
 Darkenbayev Dauren

30 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 13, MARCH 2023

From this figure 3, it can be seen that the speedup slowly increases for domain sizes up to
1000*1000 and increases rapidly for domain sizes greater than 1000*1000, this is due to the
transfer time for copying data between the host and the device.

Conclusion
In this paper, we have introduced a parallel implementation of a numerical solution to

the two-dimensional tsunami wave equation using a graphic processing unit. The numerical
method using finite differences was parallelized, modified to be compatible with the GPU, and
coded using the CUDA framework in order to utilize the GPU’s parallel processing capability.
The simulation time was compared to CPU implementation by varying the mesh size. We
observe that GPU simulations are much faster than CPU simulations.

In the future, we plan to solve this issue on GPU clusters with an aim to simulate wave
propagation over larger domain sizes. We also aim to explore the possibility of using fully
implicit finite difference schemes and solving them via the parallel cyclic reduction method
or the Thomas algorithm.

References

1. Klockner, A., Warburton, T., Bridge, J., & Hesthaven, J.S. (2009). Nodal discontinuous Galerkin
methods on graphics processors, Journal of Computational Physics, 228(21),7863-7882. https://doi.
org/10.1016/j.jcp.2009.06.041

2. Bell, N., & Garland, M. (2008). Efficient sparse matrix-vector multiplication on CUDA (Vol. 2, No. 5).
Nvidia Technical Report NVR-2008-004, Nvidia Corporation.

3. Elsen, E., LeGresley, P., & Darve, E. (2008) Large calculation of the flow over a hypersonic vehicle
using a GPU, Journal of Computational Physics, 227, 10148-10161. https://doi.org/10.1016/j.
jcp.2008.08.023

4. Gidra, H., Haque, I., Kumar, N.P., Sargurunathan, M., Gaur, M.S., Laxmi, V., ... & Singh, V. (2011,
September). Parallelizing TUNAMI-N1 Using GPGPU. In 2011 IEEE International Conference on
High Performance Computing and Communications (pp. 845-850). IEEE. https://doi.org/10.1109/
HPCC.2011.120

5. Goto, C., Ogawa, Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with
the leap-frog scheme. IOC Manuals and Guides, 35, 130.

6. Titov, V. V., & Synolakis, C. E. (1995). Modeling of breaking and nonbreaking long-wave evolution
and runup using VTCS-2. Journal of Waterway, Port, Coastal, and Ocean Engineering, 121(6), 308-316.
https://doi.org/10.1061/(ASCE)0733-950X(1995)121:6(308)

7. Wang, X., & Liu, P.L.F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and
Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147-154. https://doi.org/10.1080/002
21686.2006.9521671

8. Amouzgar, R., Liang, Q., Clarke, P.J., Yasuda, T., & Mase, H. (2016). Computationally efficient tsunami
modeling on graphics processing units (GPUs). International Journal of Offshore and Polar Engineering,
26(02), 154-160. https://doi.org/10.17736/ijope.2016.ak10

9. Arnoldy, A., & Adytia, D. (2019, July). Performance of Staggered Grid Implementation of 2D Shallow
Water Equations using CUDA Architecture. In 2019 12th International Conference on Information
& Communication Technology and System (ICTS) (pp. 286-290). IEEE. https://doi.org/10.1109/
ICTS.2019.8850930

10. Asunción, M., Castro, M.J., Mantas, J.M., & Ortega, S. (2016). Numerical simulation of tsunamis
generated by landslides on multiple GPUs. Advances in Engineering Software, 99, 59-72. https://doi.
org/10.1016/j.advengsoft.2016.05.005

11. Asunción, M., Mantas, J.M., & Castro, M.J. (2010). Programming CUDA-based GPUs to simulate
two-layer shallow water flows. In Euro-Par 2010-Parallel Processing: 16th International Euro-Par
Conference, Ischia, Italy, August 31-September 3, 2010, Proceedings, Part II 16 (pp. 353-364). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-642-15291-7_32

31

12. Khrapov, S.S., & Khoperskov, A.V. (2020). Application of Graphics Processing Units for self-
consistent modelling of shallow water dynamics and sediment transport. Lobachevskii Journal of
Mathematics, 41, 1475-1484. https://doi.org/10.1134/S1995080220080089

13. Boubekeur, M., Benkhaldoun, F., & Seaid, M. (2017). GPU accelerated finite volume methods for
three-dimensional shallow water flows. In Finite Volumes for Complex Applications VIII-Hyperbolic,
Elliptic and Parabolic Problems: FVCA 8, Lille, France, June 2017 8 (pp. 137-144). Springer International
Publishing. https://doi.org/10.1007/978-3-319-57394-6_15

14. Asunción, M., & Castro, M. J. (2017). Simulation of tsunamis generated by landslides using adaptive
mesh refinement on GPU. Journal of Computational Physics, 345, 91-110. https://doi.org/10.1016/j.
jcp.2017.05.016

15. Satria, M.T., Huang, B., Hsieh, T.J., Chang, Y.L., & Liang, W.Y. (2012). GPU acceleration of tsunami
propagation model. IEEE Journal of Selected Topics in Applied Earth Observations and remote
Sensing, 5(3), 1014-1023. https://doi.org/10.1109/JSTARS.2012.2199468

16. Nagasu, K., Sano, K., Kono, F., & Nakasato, N. (2017). FPGA-based tsunami simulation: Performance
comparison with GPUs, and roofline model for scalability analysis. Journal of Parallel and Distributed
Computing, 106, 153-169. https://doi.org/10.1016/j.jpdc.2016.12.015

17. Parna, P., Meyer, K., & Falconer, R. (2018). GPU driven finite difference WENO scheme for real
time solution of the shallow water equations. Computers & Fluids, 161, 107-120. https://doi.
org/10.1016/j.compuid.2017.11.012

18. Zhai, J., Liu, W., & Yuan, L. (2016). Solving two-phase shallow granular flow equations with a well-
balanced NOC scheme on multiple GPUs. Computers & Fluids, 134, 90-110. https://doi.org/10.1016/j.
compuid.2016.04.0

19. Imamura F. & Yalcine A.C. (2006). Tsunami Modeling Manual, 58 pages. Retrieved from http://www.
tsunami.civil.tohoku.ac.jp/hokusai3/J/projects/manual-ver-3.1.pdf

20. NVIDIA TURING GPU ARCHITECTURE. Graphics Reinvented. Retrieved from https://www.nvidia.
com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-
Turing-Architecture-Whitepaper.pdf

21. Altybay, A., Ruzhansky, M., & Tokmagambetov, N. (2020). A parallel hybrid implementation of the
2D acoustic wave equation. International Journal of Nonlinear Sciences and Numerical Simulation,
21(7-8), 821-827. https://doi.org/10.1515/ijnsns-2019-0227

DOI: 10.37943/13SCQO3041
© Altybay Arshyn, Mekebayev Nurbapa,
 Darkenbayev Dauren

