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A GPU IMPLEMENTATION OF THE TSUNAMI EQUATION

Abstract. In this paper, we consider numerical simulation and GPU (graphics processing 
unit) computing for the two-dimensional non-linear tsunami equation, which is a fundamental 
equation of tsunami propagation in shallow water areas. Tsunamis are highly destructive natural 
disasters that have a significant impact on coastal regions. These events are typically caused 
by undersea earthquakes, volcanic eruptions, landslides, and possibly an asteroid impact. To 
solve numerically, firstly we discretized these equations in a rectangular domain and then 
transformed the partial differential equations into semi-implicit finite difference schemes.  
The spatial and time derivatives are approximated by using the second-order centered 
differences following the Crank-Nicolson method and the calculation method is based on 
the Jacobi method; the computation is performed using the C++ programming language; and 
the visualization of numerical results is performed by Matlab 2021. The initial condition was 
given as a Gaussian, and the basin profile has been approximated by a hyperbolic tangent.

To accelerate the sequential algorithm, a parallel computation algorithm is developed using 
CUDA (Compute Unified Device Architecture) technology. CUDA technology has long been 
used for the numerical solution of partial differential equations (PDEs). It uses the parallel 
computing capabilities of graphics processing units (GPUs) to speed up the PDE solution. By 
taking advantage of the GPU’s massive parallelism, CUDA technology can significantly speed 
up PDE computations, making it an effective tool for scientific computing in a variety of fields.  
The performance of the parallel implementation is tested by comparing the computation 
time between the sequential (CPU) solver and CUDA implementations for various mesh sizes. 
The comparison shows that our parallel implementation gives significant acceleration in the 
implementation of CUDA. 

Keywords: Tsunami equation, finite difference scheme, numerical methods, parallel 
algorithm, CUDA.

Introduction
Since tsunami modelling is carried out over a very large area and a long period of time, it 

requires a large computational effort in the background of calculations. Therefore, in this case, 
it will be very important to use parallel calculations.
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The introduction of the CUDA programming language in 2006 has made GPU programming 
on NVIDIA graphics cards easier. CUDA has a C-like syntax, which makes it easy to learn. GPUs 
are powerful processors that are highly parallel, multi-threaded, and multi-core. They have low 
cost, high bandwidth floating-point operations, and memory access bandwidth, which make 
them appealing to high-performance computing researchers [1]. Compared to cluster systems, 
GPUs are inexpensive and consume less power with equivalent performance. Scientists and 
researchers can increase their productivity by several orders of magnitude using graphics 
processors in many fields of science and technology. For instance, in work [2], the authors 
first time efficiently implemented on the CUDA platform sparse matrix-vector multiplication, 
and they proved that scientific computing in the CUDA environment performs very well. In [3], 
the authors implemented the most complex scientific simulation on GPUs at that time when 
they implemented fluid simulation on GPUs. In this study, we examine a GPU implementation 
for applications to tsunami modelling in the coastal area. Accordingly, we develop a parallel 
algorithm for solving numerically nonlinear tsunami equations by using the CUDA technology. 
In the parallel implementation of the numerical solution to the tsunami and shallow water 
equations, many researchers proposed their algorithms using various methods. Here, we will 
mention a few of them. In the pioneering work [4], Gidra et al. considered the parallelization 
of the tsunami equation based on the TUNAMI-N1 model. They proposed two parallel 
models (data-parallel and hybrid) to speed up TUNAMI-N1 and obtained good results, but 
the structure of the kernel functions was unclear. One of the wildly used systems describing 
tsunami propagation is proposed by Imamura et al. in [19]. Indeed, the described system in this 
manual book is a modification of the shallow water equation. That is why many researchers 
use shallow water equation for tsunami waves in the coastal zone. There are a lot of numerical 
methods developed to solve the shallow water or tsunami propagation equations. Most of the 
conventional tsunami models are based on finite difference leap-frog schemes, in paper [5], 
the authors, for the first time using finite difference leap-frog schemes, did tsunami simulation; 
in [6], the authors used the finite difference leap-frog schemes for the shallow-water-wave 
equations in the calculation of the evolution of breaking and nonbreaking waves on sloping 
beaches. The authors in work [7] performed numerical simulations of the 2004 Sumatra 
earthquake fault plane mechanisms and the Indian Ocean tsunami by utilizing a modified 
shallow water equation and a leap-frog scheme. Besides the finite-difference method, the 
finite volume method has become very popular for the numerical solution of the shallow 
water equation. Therefore, many parallelization approaches on GPU are based on the finite 
volume method; for instance, in [8], the authors proposed a hydrodynamic model based on 
GPU parallel computing that has been presented for tsunami simulations. In work [9], the 
authors presented a parallel CUDA implementation of 2D Shallow Water Equations based 
on the staggered grid. But here unclear parallelization process. In [10] proposed a single 
GPU and a multi-GPU implementation of Savage–Hutter type model using MPI and the CUDA 
framework over structured meshes. Parallelization of the two-layer shallow water system on 
GPU was proposed in [11]. Khrapov at. al. [12] proposed a parallel implementation by using 
OpenMP-CUDA technologies for self-consistent simulations of surface water and sediment 
dynamics; in this implementation they used several GPUs. In [13] presented the application 
of GPU-accelerated finite volume methods for simulating three-dimensional shallow water 
flows. Asuncion et al. [14] demonstrate the use of GPU-accelerated AMR-based application 
for modeling tsunamis caused by landslides through a two-layer shallow water system. 
Satria et al. [15] proposed the GPU Acceleration of the Tsunami Propagation Model, which is 
based on the two-step finite-difference MacCormack scheme. Kohei et al. [16] present high-
performance and power-efficient computation of MOST for practical tsunami simulation with 
FPGA. Parent’s work [17] presents a GPU implementation for the real-time solution of shallow 
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water equations. Their approach is also based on a finite difference scheme. Zhai et al. [18] 
propose parallel numerical implementation of two-phase shallow granular ow equations on 
multiple GPUs. In this work, we propose a CUDA implementation to simulate tsunami wave 
propagation in the coastal area.

Governing equation and Finite difference schemes
In [19] fundamental equations of the tsunami propagation in shallow water are given in 

the following form

(1)

(2)

(3)

where  is water surface elevation, h is the depth of the water,  the total 
water depth, M and N are discharge fluxes in the x and y directions,  is the gravitational 
constant, n is a coefficient of bottom friction. In what follows, we will suppose that the tsunami 
propagation area is sufficiently large such that assuming the Dirichlet boundary condition on 
its boundary is natural.

Finite difference schemes. We rely on a rectangular time-space grid. The time discretization 
is  and the spatial grid is . The particle velocity vector field and the 
discharge flux are dened at integer spatial and time nodes:  Let

Where Lx and Ly are the length of the domain in the x and y directions, T is the total 
time,  , the grid size,  , respectively, the spatial and time step. For simplicity, we 
put  and denote  . We used finite difference method to approximate 
2D Tsunami. The spatial derivatives were approximated by using the second-order centered 
differences. The time derivatives were approximated by using the second-order centered 
differences following the Crank-Nicolson method. The equation (1), therefore, can be 
approximated by

(4)

(5)

(6)

for  
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(7)

 and with boundary conditions

(8)

for  and  , respectively.

GPU Implementation
CUDA (Compute Unified Device Architecture) was developed to enable multi-core 

parallelization on NVIDIA’s GPUs. It includes a software model and a set of compilation tools 
that support Many-Core GPUs. A CUDA program consists of two parts: a sequential program 
that runs on the CPU and a parallel part that runs on the GPU. The parallel part is called the 
kernel, and a C program with CUDA extensions distributes multiple copies of the kernel to 
available multiprocessors for concurrent execution. The CUDA code has three computational 
stages: transferring data to global GPU memory, running the CUDA core, and transferring 
results from the GPU to CPU memory. Due to the CFL condition and the need to capture all 
topographic details, implementing the method efficiently is critical. While most processors 
have multithreading capabilities, it is not straightforward to use all cores. To make the iterative 
process parallelizable, it can be divided into different sub-processes that can be processed 
concurrently by different units, provided the loop contains straight-line code and has no data 
dependency between iterations. If the data flow does not satisfy these conditions, the method 
for processing elements to make them parallelizable must be restructured. In this work, we 
used the latest NVIDIA computing architecture, including the Turing TU102 architecture and 
NVIDIA GeForce RTX 2080Ti with 11 GB of GDDR6 memory.

Fig. 1 shows the general steps of the parallel algorithm, here, we calculate M, N, η on the 
graphics processor. In this study, we use 3 kernel functions such as M, N, η, and M, N, η kernel 
functions are performed independently of each other, after getting M, N then synchronization 
is performed. Then η is calculated by the obtained results of M, N.

Figure 1. General steps of the parallel algorithm implemented in CUDA

CUDA implementation. In 2007, NVIDIA introduced CUDA, an extension to C programming 
language, for general purpose computing on graphics processors. The design of the algorithm 
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enables a straightforward way of expressing parallelism in terms of data level. The steps 
involved in solving equations (4)-(6) are outlined in Algorithm 1.

Experiment
This section presents the outcomes achieved on a desktop computer with a configuration of 

4352 cores GeForce RTX 2080 TI, NVIDIA GPU, and an Intel Core(TM) i7-9800X CPU running 
at 3.80 GHz, with 64 GB RAM. The simulation parameters are set as follows. Mesh size is 
uniform in both directions with  , and numerical time step  is 0.05 s, and 
simulation time is T = 5.0 s, therefore the total number of time steps is 100. To provide more 
accurate information, we conducted experiments on five scenarios with varying domain sizes: 
200×200, 500×500, 1000×1000, 2000×2000, and 4000×4000.

In the following, we demonstrate numerical simulations. All calculations and 
visualization are done in Matlab by using the simple iterative method. For all simulations 

 . For the simulations, we use initial conditions

and Dirichlet boundary conditions. The sea basin is modeled in the form of the hyperbolic 
tangent. The depth prole is given as

The result of the numerical simulation is illustrated in Fig. 2.
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Figure 2. Displacement of the wave at different times (t = 0; t = 0.5; t = 1.0; t = 2.0).

Table 1 shows the CPU time and GPU time in seconds for solving the problem (1)-(4) using 
serial and CUDA methods. The speedup of the process can be seen in Fig. 3.

Table 1. Execution time and speedup with the Intel Core(TM) i7-9800X, 3.80 GHz, 
NVIDIA RTX 2080 TI

Domain size CPU time GPU time
200 × 200 1.128 0.52
500 × 500 6.883 2.47

1000 × 1000 27.324 9.5
2000 × 2000 107.21 23.62
4000 × 4000 434.502 79.66

Table 1 shows that the execution time in the GPU is significantly faster than the CPU, noting 
the domain size.

Figure 3. Speedup
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From this figure 3, it can be seen that the speedup slowly increases for domain sizes up to 
1000*1000 and increases rapidly for domain sizes greater than 1000*1000, this is due to the 
transfer time for copying data between the host and the device.

Conclusion
In this paper, we have introduced a parallel implementation of a numerical solution to 

the two-dimensional tsunami wave equation using a graphic processing unit. The numerical 
method using finite differences was parallelized, modified to be compatible with the GPU, and 
coded using the CUDA framework in order to utilize the GPU’s parallel processing capability. 
The simulation time was compared to CPU implementation by varying the mesh size. We 
observe that GPU simulations are much faster than CPU simulations.

In the future, we plan to solve this issue on GPU clusters with an aim to simulate wave 
propagation over larger domain sizes. We also aim to explore the possibility of using fully 
implicit finite difference schemes and solving them via the parallel cyclic reduction method 
or the Thomas algorithm.
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