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COMPLEX EVENT PROCESSING APPROACH ON SUBSCRIBERS’ 
DATA OF TELECOM OPERATOR

Abstract: Nowadays the usage of mobile phones has reached extremely large worldwide 
proportions and is increasing dramatically. There is a stronger need to decrypt the important 
information that is hidden among them. Even all required information is gained, processes 
of companies remain static and can not be changed dynamically to adapt to actual business 
needs, reducing the advantages that can be achieved. Every second millions of raw information 
are being generated by mobile users, which handled by Telecom operators in data servers. By 
using Complex Event Processing (CEP) approach in real-time, we can obtain the information 
that really matters to our business and use it to monetize the vast amount of data that is 
being collected through mobile phone usage. In this paper, we present an internally developed 
framework that combines the strengths of CEP and business process implementations which 
allows us to react to the needs of today’s fast-changing environment and requirements. We 
demonstrate 3 simple use case scenarios to show the effectiveness of the CEP approach in our 
situation. The importance of implementing the CEP approach on subscribers’ data should not 
be overlooked as means of trying to capitalize on new services, however, have to be considered 
as a challenge to give subscribers the opportunity to get more customized offers and services.

Key words: Complex Event Processing, Telecom Data Analysis, Information Processing, 
Targeted campaigns.

Introduction
In 2019 the mobile phone user database has reached almost 70% of the global population 

with more than 5 billion devices in use [1]. Given the dynamicity of today’s business environments, 
there is a need to continuously adapt and keep up to date the business processes in order to 
respond to the changes in those environments and keep a competitive level among Telecom 
operators and solution providers. One of the main concerns for Telecom operators’ applications 
is to handle and interpret online raw data. By using the CEP approach and developed framework 
we can facilitate the solution of this problem by gathering needed information in real-time 
about the subscribers’ different events on the Telecom network in order to determine the 
necessity of making specific offers and suggesting new promo.

Real-time data processing systems are used widely to provide insights about events as 
they happen. Many companies have developed their own systems: Twitters Storm and Heron, 
Googles Millwheel [8], LinkedIns Samza and Facebooks´ Puma, Swift and Stylus [7, 9-11].

One of the main challenges for processing data dynamically is the size and the speed of 
incoming data at which it is being generated. Every second, millions of data are generated 
by phone mobile users and entire traffic allocates in Telecom operator’s data centers. Despite 
having a common goal, solutions based on CEP differ in a wide range of aspects, including 
architectures, data models, rule languages, and processing mechanisms. In part, this is due to 
the fact that they were the result of the research efforts of different communities, business 
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market demands, each one bringing its own view of the problem and its background for the 
definition of a solution [3].

In this paper an internally developed framework is presented that combines the advantages 
of the CEP and dynamic business process adaptation, which allows us to respond to the  needs 
of today’s rapidly changing environments. Sub- scribers information for different business-
specific use cases and triggers is handled such as balance information, mobile internet usages, 
the location of the device to enrich data about subscribers, and give deep insights on user’s 
interest, lifestyle patterns in a given time period. The picture below illustrates our main idea 
of implementing the CEP approach on Telecom operator’s data traffic.

Fig. 1. Main idea

The framework
Before we start our journey on solution architecture it is important to say about motivations, 

limitations and business/technical requirements that were faced.
Firstly, we need to mention current limitations of legacy system where transactions per 

second (TPS), in our case Events Per Second is more precise was limited by 2000. Taking into 
account that a subscriber base reaches 10 million and active subscriber base is almost 6 million 
that threshold is insufficient to cover and handle all network events in real-time. Besides, 
the system was consuming all resources all the time which caused performance issues and 
several critical incidents on the system. Analyzing the data traffic throughout (22.5 TB/month), 
dynamicity of business requirements, and capabilities of the new solution, challenged us to 
handle at least 165 000 events per second.

Secondly, from the technical perspective our approach was to create one job that will run all 
triggers and business rules. By this approach, we should benefit that all triggers and business 
rules will run effectively and manage rules without restarting the system.

Our proposed solution uses a component-based architecture, where each component plays 
a critical role in whole system. Fig. 2 on page 2 illustrates high level overview of the system. 
On the left, the ingestion layer is responsible for fetching and receiving raw data from different 
data sources (SMS events, Voice usage, Internet usage, Location-based triggers) and saves it 
into the Events hub. Then the data is consumed by the event execution engine, which in 
turn, based on current trigger definitions, outputs notifications to the Events hub. Finally, the 
outgestion layer fetches the notification and dispatches them to appropriate subsystems. All 
main components in the architecture will be described in the next sections to give you a more 
detailed overview of the solution.
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Fig. 2. High level architecture overview

The ingestion
The process of collecting data from various data sources, preparing it, and saving it for 

complex processing and generating triggers. Currently, there are several different approaches 
to how data ingestion pipeline can be built:

The first approach consists of two steps. Firstly, the raw data is fetched from a data source 
and is a subject for some preliminary processing, e.g. splitting a huge file containing multiple 
events. After that, the data is being transformed, serialized, and finally pushed to Events hub, 
where it waits for consumption by the event execution engine. This approach is preferred 
whenever the event transformation is complex or the data volume is too big to be processed 
in the ingestion layer.

The data is fetched/received, transformed, and serialized within the same pipeline.
The raw data is immediately pushed to the Events hub. Transformation takes place in the 

execution engine.
It is worth mentioning that both intermediate results and transformed events are stored 

in Events hub topics. Each event type (more precisely, events originating from the same data 
source) is kept in a separate topic. Despite which ingestion approach suits better, we need to 
notice what file types and protocols can be ingested in our system. To illustrate how various 
file types are fetching and transforming to one input format, see the Fig. 3 on page 2.

Fig. 3. Ingestion file types
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Events Hub
It is a system that keeps all the in-flight data streams in a reliable and persistent way. The 

data in an Events hub topic is divided into partitions. The partitions are distributed over the 
servers in the cluster with each server handling data and requests for a share of the partitions. 
Each partition is replicated across a configurable number of servers for fault tolerance. For 
a topic with replication factor N, the Events hub tolerates up to N-1 server failures without 
losing any records committed to the topic.

The processing engine
It is an execution engine for complex event processing applications. In this component, 

streaming applications are implemented that consume all the prepared events by the ingestion 
system and apply trigger procedures defined by business users. The provided management 
functionalities over the CEP applications, like define, start/stop of the application. Execution 
jobs are stateful. In order to make state fault- tolerant, the processing engine makes periodic 
checkpoints of the state. Checkpoints allow to recover state and positions in the streams in 
case of a program failure (due to machine-, network-, or software failure). Any records that are 
processed as part of the restarted job are guaranteed to not have been part of the previously 
checkpointed state. In other words, each event from an input stream affects the data flow 
state exactly once. However, it does not mean each event is processed only once. More 
precisely, when the state and input streams’ offsets are restored, the processing engine needs 
to replay the events that have been processed between the last checkpoint and the failure. In 
consequence, for instance, some notifications might be generated twice. To illustrate how state 
and checkpoints are working, please see figure 4 below.

Fig. 4. Checkpoint and failure

The outgestion
The process of communicating with external layers based on processed data. Outgestion 

layer is pretty straightforward, all Processing job’s notifications are stored in a single Events 
hub topic. Then the outgestion pipeline reads them, transforms to the format-specific for the 
destination system, and pushes them there.
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Fig. 5. Outgestion

Technology stack
Regarding the technology stack that was used, take a look on the list below, all components 

are based on a free and open-sourced Apache product:
• Apache Flink – event processing engine. Provides flexible event time support. Fault-

tolerant, high throughput and low latency.
• Apache Hadoop – a framework that allows for the distributed processing of large data 

sets across clusters of computers using simple programming models. In the provided 
solution, Hortonworks distributive is using.

• Apache Kafka – central events hub, where all events come through. Simple and reliable. 
The ingestion system saves data to it, the outgestion system is reading data from it for 
sending it further. It is the only component that communicates with Apache Flink directly.

• Apache NiFi – engine for managing ingestion and outgestion pipelines. NiFi collects data 
from data sources and transfers them to Apache Kafka. With NiFi it is possible to deploy 
different servers, for example, HTTP, FTP, etc.

Use cases
In this section, there would be described top three business use cases, which could be easily 

configured in the CEP and give win-win results when the whole system starts working.
Balance top-up – A subscriber top-ups his/her balance too often in short period of time. We 

can offer him/her a less expensive tariff or auto-payment services.

Fig. 6. Balance top-up

Billing systems data sources are ingested and can track subscriber’s balance activities. CEP 
is able to capture certain pre-defined criteria (triggers). When any subscriber makes a top-up 
to his balance, CEP captures that and sends a request to notify the user of the balance after 
top-up via SMS Center.

Fraud detection – Sends an email to the anti-fraud unit if subscriber registered in roaming, 
however, his balance now is equal to 0.
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Fig. 7. Fraud detection

Extra bonuses – Top-up subscriber balance with extra SMS/Voice usage/Internet usage 
bonuses when the subscriber fulfill all conditions at promo campaigns.

Fig. 8. Extra bonus

Conclusion
In this paper, the solution of how the CEP approach could be implemented in Telecom 

operator is presented, which helps to solve many technical limitations of our legacy systems 
and business requirements issues, process, and analyze the vast amounts of subscribers’ data 
in near real-time that was impossible before. Furthermore, there were have been defined 
triggers and business rules which could give a win-win effect after project launches. Apache 
components that are typically used in our architecture provide the possibility to build the CEP 
ecosystem, which will play a vital role in the next decade for the Telecom operator business. 
Ongoing work will focus on further optimization and improvement possibilities, some of the 
directions in which this work can be improved are:

One of our approach was to build one job to run all triggers/rules. However, any coin has a 
reserve side, and in our case, one bad rule could affect to all other triggers/rules impacting on 
a whole system. That is the main challenge that should be addressed in future works.

Response latency time will be always actual and crucial issue, due to the dynamics of 
today’s business environments and requirements. We need to pay attention to how effectively 
ingestion and outgestion pipelines are executing the data traffic.

Due to the data traffic is extremely huge and grows dramatically, the challenge is to 
continuously write and store data in Data Lake/Data Warehouse and implement an Online 
Analytical Processing engine for analytical purposes and reports. Separating written data from 
data traffic should help to avoid performance and sustainability issues.
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